skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: nlTGCR: A Class of Nonlinear Acceleration Procedures Based on Conjugate Residuals
This paper develops a new class of nonlinear acceleration algorithms based on extending conjugate residual-type procedures from linear to nonlinear equations. The main algorithm has strong similarities with Anderson acceleration as well as with inexact Newton methods—depending on which variant is implemented. We prove theoretically and verify experimentally, on a variety of problems from simulation experiments to deep learning applications, that our method is a powerful accelerated iterative algorithm. The code is available at https://github.com/Data-driven-numerical-methods/Nonlinear-Truncated-Conjugate-Residual.  more » « less
Award ID(s):
2208456
PAR ID:
10534694
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
SIAM journal on matrix analysis and applications
ISSN:
0895-4798
Subject(s) / Keyword(s):
nonlinear acceleration generalized conjugate residual truncated GCR Anderson acceleration Newton’s method deep learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A one-step analysis of Anderson acceleration with general algorithmic depths is presented. The resulting residual bounds within both contractive and noncontractive settings reveal the balance between the contributions from the higher and lower order terms, which are both dependent on the success of the optimization problem solved at each step of the algorithm. The new residual bounds show the additional terms introduced by the extrapolation produce terms that are of a higher order than was previously understood. In the contractive setting these bounds sharpen previous convergence and acceleration results. The bounds rely on sufficient linear independence of the differences between consecutive residuals, rather than assumptions on the boundedness of the optimization coefficients, allowing the introduction of a theoretically sound safeguarding strategy. Several numerical tests illustrate the analysis primarily in the noncontractive setting, and demonstrate the use of the method, the safeguarding strategy and theory-based guidance on dynamic selection of the algorithmic depth, on a p-Laplace equation, a nonlinear Helmholtz equation and the steady Navier–Stokes equations with high Reynolds number in three spatial dimensions. 
    more » « less
  2. PurposeTo develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. TheoryRobust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. MethodsThe training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. ResultsPhantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. ConclusionThe RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. 
    more » « less
  3. Nonlinear Model Predictive Control (NMPC) is a state-of-the-art approach for locomotion and manipulation which leverages trajectory optimization at each control step. While the performance of this approach is computationally bounded, implementations of direct trajectory optimization that use iterative methods to solve the underlying moderately-large and sparse linear systems, are a natural fit for parallel hardware acceleration. In this work, we introduce MPCGPU, a GPU-accelerated, real-time NMPC solver that leverages an accelerated preconditioned conjugate gradient (PCG) linear system solver at its core. We show that MPCGPU increases the scalability and real-time performance of NMPC, solving larger problems, at faster rates. In particular, for tracking tasks using the Kuka IIWA manipulator, MPCGPU is able to scale to kilohertz control rates with trajectories as long as 512 knot points. This is driven by a custom PCG solver which outperforms state-of-the-art, CPU-based, linear system solvers by at least 10x for a majority of solves and 3.6x on average. 
    more » « less
  4. Abstract This paper develops an efficient and robust solution technique for the steady Boussinesq model of non-isothermal flow using Anderson acceleration applied to a Picard iteration. After analyzing the fixed point operator associated with the nonlinear iteration to prove that certain stability and regularity properties hold, we apply the authors’ recently constructed theory for Anderson acceleration, which yields a convergence result for the Anderson accelerated Picard iteration for the Boussinesq system. The result shows that the leading term in the residual is improved by the gain in the optimization problem, but at the cost of additional higher order terms that can be significant when the residual is large. We perform numerical tests that illustrate the theory, and show that a 2-stage choice of Anderson depth can be advantageous. We also consider Anderson acceleration applied to the Newton iteration for the Boussinesq equations, and observe that the acceleration allows the Newton iteration to converge for significantly higher Rayleigh numbers that it could without acceleration, even with a standard line search. 
    more » « less
  5. Nonlinear optimization problems arise in all industries. Accelerating optimization solvers is desirable. Efforts have been made to accelerate interior point methods for large scale problems. However, since the interior point algorithm used requires many function evaluations, the acceleration of the algorithm becomes less beneficial. We introduce a way to accelerate the sequential quadratic programming method, which is characterized by minimizing function evaluations, on graphical processing units. 
    more » « less