skip to main content


This content will become publicly available on June 12, 2025

Title: Processing-in-Memory Designs Based on Emerging Technology for Efficient Machine Learning Acceleration
The unprecedented success of artificial intelligence (AI) enriches machine learning (ML)-based applications. The availability of big data and compute-intensive algorithms empowers versatility and high accuracy in ML approaches. However, the data processing and innumerable computations burden conventional hardware systems with high power consumption and low performance. Breaking away from the traditional hardware design, non-conventional accelerators exploiting emerging technology have gained significant attention with a leap forward since the emerging devices enable processing-in-memory (PIM) designs of dramatic improvement in efficiency. This paper presents a summary of state-of-the-art PIM accelerators over a decade. The PIM accelerators have been implemented for diverse models and advanced algorithm techniques across diverse neural networks in language processing and image recognition to expedite inference and training. We will provide the implemented designs, methodologies, and results, following the development in the past years. The promising direction of the PIM accelerators, vertically stacking for More than Moore, is also discussed.  more » « less
Award ID(s):
2328805 2112562
PAR ID:
10534702
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
614-619
Subject(s) / Keyword(s):
Processing-in-Memory, Accelerators, Emerging Technology, Memristor, Deep Learning
Format(s):
Medium: X
Location:
Clearwater, FL
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this work, we review two alternative Processing-in-Memory (PIM) accelerators based on Spin-Orbit-Torque Magnetic Random Access Memory (SOT-MRAM) to execute DNA short read alignment based on an optimized and hardware-friendly alignment algorithm. We first discuss the reconstruction of the existing sequence alignment algorithm based on BWT and FM-index such that it can be fully implemented leveraging PIM functions. We then transform SOT-MRAM array to a potential computational memory by presenting two different reconfigurable sense amplifiers to accelerate the reconstructed alignment-in-memory algorithm. The cross-layer simulation results show that such PIM platforms are able to achieve a nearly ten-fold and two-fold increases in throughput/power/area measure compared with recent ASIC and processing-in-ReRAM designs, respectively. 
    more » « less
  2. With the prosperous development of Deep Neural Network (DNNs), numerous Process-In-Memory (PIM) designs have emerged to accelerate DNN models with exceptional throughput and energy-efficiency. PIM accelerators based on Non-Volatile Memory (NVM) or volatile memory offer distinct advantages for computational efficiency and performance. NVM based PIM accelerators, demonstrated success in DNN inference, face limitations in on-device learning due to high write energy, latency, and instability. Conversely, fast volatile memories, like SRAM, offer rapid read/write operations for DNN training, but suffer from significant leakage currents and large memory footprints. In this paper, for the first time, we present a fully-digital sparse processing in hybrid NVM-SRAM design, synergistically combines the strengths of NVM and SRAM, tailored for on-device continual learning. Our designed NVM and SRAM based PIM circuit macros could support both storage and processing of N:M structured sparsity pattern, significantly improving the storage and computing efficiency. Exhaustive experiments demonstrate that our hybrid system effectively reduces area and power consumption while maintaining high accuracy, offering a scalable and versatile solution for on-device continual learning. 
    more » « less
  3. null (Ed.)
    In this paper, for the first time, we propose a high-throughput and energy-efficient Processing-in-DRAM-accelerated genome assembler called PIM-Assembler based on an optimized and hardware-friendly genome assembly algorithm. PIM-Assembler can assemble large-scale DNA sequence dataset from all-pair overlaps. We first develop PIM-Assembler platform that harnesses DRAM as computational memory and transforms it to a fundamental processing unit for genome assembly. PIM-Assembler can perform efficient X(N)OR-based operations inside DRAM incurring low cost on top of commodity DRAM designs (~5% of chip area). PIM-Assembler is then optimized through a correlated data partitioning and mapping methodology that allows local storage and processing of DNA short reads to fully exploit the genome assembly algorithm-level's parallelism. The simulation results show that PIM-Assembler achieves on average 8.4× and 2.3 wise× higher throughput for performing bulk bit-XNOR-based comparison operations compared with CPU and recent processing-in-DRAM platforms, respectively. As for comparison/addition-extensive genome assembly application, it reduces the execution time and power by ~5× and ~ 7.5× compared to GPU. 
    more » « less
  4. Graph processing recently received intensive interests in light of a wide range of needs to understand relationships. It is well-known for the poor locality and high memory bandwidth requirement. In conventional architectures, they incur a significant amount of data movements and energy consumption which motivates several hardware graph processing accelerators. The current graph processing accelerators rely on memory access optimizations or placing computation logics close to memory. Distinct from all existing approaches, we leverage an emerging memory technology to accelerate graph processing with analog computation. This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suitable for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01X (up to 132.67X) speedup and a 33.82X energy saving on geometric mean compared to a CPU baseline system. Compared to GPU, GRAPHR achieves 1.69X to 2.19X speedup and consumes 4.77X to 8.91X less energy. GRAPHR gains a speedup of 1.16X to 4.12X, and is 3.67X to 10.96X more energy efficiency compared to PIM-based architecture. 
    more » « less
  5. Sorting is a fundamental function in many applications from data processing to database systems. For high performance, sorting-hardware based sorting designs are implemented by conventional binary or emerging stochastic computing (SC) approaches. Binary designs are fast and energy-efficient but costly to implement. SC-based designs, on the other hand, are area and power-efficient but slow and energy-hungry. So, the previous studies of the hardware-based sorting further faced scalability issues. In this work, we propose a novel scalable low-cost design for implementing sorting networks. We borrow the concept of SC for the area- and power efficiency but use weighted stochastic bit-streams to address the high latency and energy consumption issue of SC designs. A new lock and swap (LAS) unit is proposed to sort weighted bit-streams. The LAS-based sorting network can determine the result of comparing different input values early and then map the inputs to the corresponding outputs based on shorter weighted bit-streams. Experimental results show that the proposed design approach achieves much better hardware scalability than prior work. Especially, as increasing the number of inputs, the proposed scheme can reduce the energy consumption by about 3.8% - 93% compared to prior binary and SC-based designs. 
    more » « less