skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-similar blow-up solutions in the generalised Korteweg-de Vries equation: spectral analysis, normal form and asymptotics
Abstract In the present work we revisit the problem of the generalised Korteweg–de Vries equation parametrically, as a function of the relevant nonlinearity exponent, to examine the emergence of blow-up solutions, as traveling waveforms lose their stability past a critical point of the relevant parameterp, here atp = 5. We provide anormal formof the associated collapse dynamics, and illustrate how this captures the collapsing branch bifurcating from the unstable traveling branch. We also systematically characterise the linearisation spectrum of not only the traveling states, but importantly of the emergent collapsing waveforms in the so-called co-exploding frame where these waveforms are identified as stationary states. This spectrum, in addition to two positive real eigenvalues which are shown to be associated with the symmetries of translation and scaling invariance of the original (non-exploding) frame features complex patterns of negative eigenvalues that we also fully characterise. We show that the phenomenology of the latter is significantly affected by the boundary conditions and is far more complicated than in the corresponding symmetric Laplacian case of the nonlinear Schrödinger problem that has recently been explored. In addition, we explore the dynamics of the unstable solitary waves forp > 5 in the co-exploding frame.  more » « less
Award ID(s):
2204782
PAR ID:
10534742
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Nonlinearity
Volume:
37
Issue:
9
ISSN:
0951-7715
Page Range / eLocation ID:
095034
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider pattern-forming fronts in the complex Ginzburg–Landau equation with a traveling spatial heterogeneity which destabilises, or quenches, the trivial ground state while progressing through the domain. We consider the regime where the heterogeneity propagates with speed c just below the linear invasion speed of the pattern-forming front in the associated homogeneous system. In this situation, the front locks to the interface of the heterogeneity leaving a long intermediate state lying near the unstable ground state, possibly allowing for growth of perturbations. This manifests itself in the spectrum of the linearisation about the front through the accumulation of eigenvalues onto the absolute spectrum associated with the unstable ground state. As the quench speed c increases towards the linear invasion speed, the absolute spectrum stabilises with the same rate at which eigenvalues accumulate onto it allowing us to rigorously establish spectral stability of the front in L 2 ( R ) . The presence of unstable absolute spectrum poses a technical challenge as spatial eigenvalues along the intermediate state no longer admit a hyperbolic splitting and standard tools such as exponential dichotomies are unavailable. Instead, we projectivise the linear flow, and use Riemann surface unfolding in combination with a superposition principle to study the evolution of subspaces as solutions to the associated matrix Riccati differential equation on the Grassmannian manifold. Eigenvalues can then be identified as the roots of the meromorphic Riccati–Evans function, and can be located using winding number and parity arguments. 
    more » « less
  2. Abstract The inverse scattering transform for the focusing nonlinear Schrödinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the branched nature of the two asymptotic eigenvalues of the associated scattering problem. The Jost eigenfunctions and scattering coefficients are defined explicitly as single‐valued functions on the complex plane with jump discontinuities along certain branch cuts. The analyticity properties, symmetries, discrete spectrum, asymptotics, and behavior at the branch points are discussed explicitly. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with poles. Reductions to all cases previously discussed in the literature are explicitly discussed. The scattering data associated to a few special cases consisting of physically relevant Riemann problems are explicitly computed. 
    more » « less
  3. We consider Euler flows on two-dimensional (2-D) periodic domain and are interested in the stability, both linear and nonlinear, of a simple equilibrium given by the 2-D Taylor–Green vortex. As the first main result, numerical evidence is provided for the fact that such flows possess unstable eigenvalues embedded in the band of the essential spectrum of the linearized operator. However, the unstable eigenfunction is discontinuous at the hyperbolic stagnation points of the base flow and its regularity is consistent with the prediction of Lin (Intl Math. Res. Not., vol. 2004, issue 41, 2004, pp. 2147–2178). This eigenfunction gives rise to an exponential transient growth with the rate given by the real part of the eigenvalue followed by passage to a nonlinear instability. As the second main result, we illustrate a fundamentally different, non-modal, growth mechanism involving a continuous family of uncorrelated functions, instead of an eigenfunction of the linearized operator. Constructed by solving a suitable partial differential equation (PDE) optimization problem, the resulting flows saturate the known estimates on the growth of the semigroup related to the essential spectrum of the linearized Euler operator as the numerical resolution is refined. These findings are contrasted with the results of earlier studies of a similar problem conducted in a slightly viscous setting where only the modal growth of instabilities was observed. This highlights the special stability properties of equilibria in inviscid flows. 
    more » « less
  4. Abstract We present the average rest-frame spectrum of the final catalog of dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope's SPT-SZ survey and measured with Band 3 of the Atacama Large Millimeter/submillimeter Array. This work builds on the previous average rest-frame spectrum, given in Spilker et al. (2014) for the first 22 sources, and is comprised of a total of 78 sources, normalized by their respective apparent dust masses. The spectrum spans 1.9 <z< 6.9 and covers rest-frame frequencies of 240–800 GHz. Combining this data with low-JCO observations from the Australia Telescope Compact Array, we detect multiple bright line features from12CO, [Ci], and H2O, as well as fainter molecular transitions from13CO, HCN, HCO+, HNC, CN, H2O+, and CH. We use these detections, along with limits from other molecules, to characterize the typical properties of the interstellar medium (ISM) for these high-redshift DSFGs. We are able to divide the large sample into subsets in order to explore how the average spectrum changes with various galaxy properties, such as effective dust temperature. We find that systems with hotter dust temperatures exhibit differences in the bright12CO emission lines, and contain either warmer and more excited dense gas tracers or larger dense gas reservoirs. These observations will serve as a reference point to studies of the ISM in distant luminous DSFGs (LIR> 1012L), and will inform studies of chemical evolution before the peak epoch of star formation atz= 2–3. 
    more » « less
  5. Hemaspaandra et al. [6] and Carleton et al. [3, 4] found that many pairs of electoral (decision) problems about the same election sys- tem coincide as sets (i.e., they are collapsing pairs), which had pre- viously gone undetected in the literature. While both members of a collapsing pair certainly have the same decision complexity, there is no guarantee that the associated search problems also have the same complexity. For practical purposes, search problems are more relevant than decision problems. Our work focuses on exploring the relationships between the search versions of collapsing pairs. We do so by giving a framework that relates the complexity of search problems via efficient reduc- tions that transform a solution from one problem to a solution of the other problem on the same input. We not only establish that the known decision collapses carry over to the search model, but also refine our results by determining for the concrete systems plurality, veto, and approval whether collapsing search-problem pairs are polynomial-time computable or NP-hard. 
    more » « less