skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral stability of pattern-forming fronts in the complex Ginzburg–Landau equation with a quenching mechanism
Abstract We consider pattern-forming fronts in the complex Ginzburg–Landau equation with a traveling spatial heterogeneity which destabilises, or quenches, the trivial ground state while progressing through the domain. We consider the regime where the heterogeneity propagates with speed c just below the linear invasion speed of the pattern-forming front in the associated homogeneous system. In this situation, the front locks to the interface of the heterogeneity leaving a long intermediate state lying near the unstable ground state, possibly allowing for growth of perturbations. This manifests itself in the spectrum of the linearisation about the front through the accumulation of eigenvalues onto the absolute spectrum associated with the unstable ground state. As the quench speed c increases towards the linear invasion speed, the absolute spectrum stabilises with the same rate at which eigenvalues accumulate onto it allowing us to rigorously establish spectral stability of the front in L 2 ( R ) . The presence of unstable absolute spectrum poses a technical challenge as spatial eigenvalues along the intermediate state no longer admit a hyperbolic splitting and standard tools such as exponential dichotomies are unavailable. Instead, we projectivise the linear flow, and use Riemann surface unfolding in combination with a superposition principle to study the evolution of subspaces as solutions to the associated matrix Riccati differential equation on the Grassmannian manifold. Eigenvalues can then be identified as the roots of the meromorphic Riccati–Evans function, and can be located using winding number and parity arguments.  more » « less
Award ID(s):
2006887
PAR ID:
10335777
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nonlinearity
Volume:
35
Issue:
1
ISSN:
0951-7715
Page Range / eLocation ID:
170 to 244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We establish sharp nonlinear stability results for fronts that describe the creation of a periodic pattern through the invasion of an unstable state. The fronts we consider are critical, in the sense that they are expected to mediate pattern selection from compactly supported or steep initial data. We focus on pulled fronts, that is, on fronts whose propagation speed is determined by the linearization about the unstable state in the leading edge, only. We present our analysis in the specific setting of the FitzHugh–Nagumo system, where pattern-forming uniformly translating fronts have recently been constructed rigorously [Carter and Scheel (2018)], but our methods can be used to establish nonlinear stability of pulled pattern-forming fronts in general reaction-diffusion systems. This is the first stability result for critical pattern-selecting fronts and provides a rigorous foundation for heuristic, universal wave number selection laws in growth processes based on a marginal stability conjecture. The main technical challenge is to describe the interaction between two separate modes of marginal stability, one associated with the spreading process in the leading edge, and one associated with the pattern in the wake. We develop tools based on far-field/core decompositions to characterize, and eventually control, the interaction between these two different types of diffusive modes. Linear decay rates are insufficient to close a nonlinear stability argument and we therefore need a sharper description of the relaxation in the wake of the front using a phase modulation ansatz. We control regularity in the resulting quasilinear equation for the modulated perturbation using nonlinear damping estimates. 
    more » « less
  2. We determine the asymptotic spreading speed of the solutions of a Fisher-KPP reaction-diffusion equation, starting from compactly supported initial data, when the diffusion coefficient is a fixed bounded monotone profile that is shifted at a given forcing speed and satisfies a general uniform ellipticity condition. Depending on the monotonicity of the profile, we are able to characterize this spreading speed as a function of the forcing speed and the two linear spreading speeds associated to the asymptotic problems at \begin{document}$$ x = \pm \infty $$\end{document}. Most notably, when the profile of the diffusion coefficient is increasing we show that there is an intermediate range for the forcing speed where spreading actually occurs at a speed which is larger than the linear speed associated with the homogeneous state around the position of the front. We complement our study with the construction of strictly monotone traveling front solutions with strong exponential decay near the unstable state when the profile of the diffusion coefficient is decreasing and in the regime where the forcing speed is precisely the selected spreading speed. 
    more » « less
  3. We establish selection of critical pulled fronts in invasion processes as predicted by the marginal stability conjecture. Our result shows convergence to a pulled front with a logarithmic shift for open sets of steep initial data, including one-sided compactly supported initial conditions. We rely on robust, conceptual assumptions, namely existence and marginal spectral stability of a front traveling at the linear spreading speed and demonstrate that the assumptions hold for open classes of spatially extended systems. Previous results relied on comparison principles or probabilistic tools with implied nonopen conditions on initial data and structure of the equation. Technically, we describe the invasion process through the interaction of a Gaussian leading edge with the pulled front in the wake. Key ingredients are sharp linear decay estimates to control errors in the nonlinear matching and corrections from initial data. 
    more » « less
  4. This paper combines two control design aspects for a class of infinite dimensional systems, and each of the designs aims at significantly reducing the implementation complexity and computational load. A functional observer, and its extension of an unknown input functional observer, aims to reconstruct a functional of the infinite dimensional state. The resulting compensator only requires the solution to an operator Sylvester equation plus one differential equation for each dimension of the control signal, as opposed to an infinite dimensional filter evolution equation and an associated operator Riccati equation for the filter operator covariance. When the functional to be estimated coincides with the expression of a full state feedback control signal, then the functional observer becomes the minimum order compensator. When the parabolic system admits a decomposition whereby the system is decomposed into a lower finite dimensional subspace comprising the unstable eigenspectrum and an infinite stable subspace, then the functional observer-based compensator design becomes the minimum order compensator for the finite dimensional subsystem. This approach dramatically reduces the computation for solving the ARE needed for the full state controller and the associated Sylvester equation needed for the functional observer. Numerical results for a parabolic PDE in one and two spatial dimensions are included. 
    more » « less
  5. Abstract We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein–Gordon models. The multi-kinks are constructed using Lin’s method from an alternating sequence of well-separated kink and antikink solutions. We then locate the point spectrum associated with these multi-kink solutions by reducing the spectral problem to a matrix equation. For an m -structure multi-kink, there will be m eigenvalues in the point spectrum near each eigenvalue of the primary kink, and, as long as the spectrum of the primary kink is imaginary, the spectrum of the multi-kink will be as well. We obtain analytic expressions for the eigenvalues of a multi-kink in terms of the eigenvalues and corresponding eigenfunctions of the primary kink, and these are in very good agreement with numerical results. We also perform numerical time-stepping experiments on perturbations of multi-kinks, and the outcomes of these simulations are interpreted using the spectral results. 
    more » « less