At the end of its second decade, the Surface Ocean-Lower Atmosphere Study (SOLAS) continues to expand critical collaborations in Earth system research, opening new gateways between the disciplines of oceanic and atmospheric science. The collection of papers in this Special Feature highlights important recent advances in air-sea interaction science, emphasizing emerging priorities and critical challenges. Since the last SOLAS synthesis in 2014, the community has gained a more nuanced understanding of the variety of marine sources of atmospheric aerosols; the influence of chemical speciation on atmospheric deposition and resulting biogeochemical impacts in the ocean; the mechanistic microscale controls of aerosol production and gas exchange at the sea surface; and also how air-sea exchange processes are influencing and responding to climate change, among numerous other advances. At the same time, SOLAS scientists have engaged more directly with socio-economic networks and in the development and evaluation of environmental and policy decisions. In addition to substantial contributions to improved understanding of the global cycling of greenhouse gases, SOLAS scientists are examining the impacts of new shipping regulations and contributing to development of frameworks for climate intervention research and governance. However, challenges remain, including characterizing the variability in air-sea gas exchange, particularly in coastal regions, and identifying mechanisms by which marine emissions influence cloud dynamics and thereby coupled marine and atmospheric feedbacks to climate change. Addressing these and other challenges requires development of innovative scientific tools (e.g., chemical sensors, expanded and integrated observational networks, machine learning algorithms), and also new inter- and trans-disciplinary collaborations, to ensure that air-sea exchange research continues to transcend boundaries in tackling current and emerging global challenges.
more »
« less
Polar oceans and sea ice in a changing climate
Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the context of climate change. However, our ability to monitor the pace and magnitude of changes in the polar regions and evaluate their impacts for the rest of the globe is limited by both remoteness and sea-ice coverage. Sea ice not only supports biological activity and mediates gas and aerosol exchange but can also hinder some in-situ and remote sensing observations. While satellite remote sensing provides the baseline climate record for sea-ice properties and extent, these techniques cannot provide key variables within and below sea ice. Recent robotics, modeling, and in-situ measurement advances have opened new possibilities for understanding the ocean–sea ice–atmosphere system, but critical knowledge gaps remain. Seasonal and long-term observations are clearly lacking across all variables and phases. Observational and modeling efforts across the sea-ice, ocean, and atmospheric domains must be better linked to achieve a system-level understanding of polar ocean and sea-ice environments. As polar oceans are warming and sea ice is becoming thinner and more ephemeral than before, dramatic changes over a suite of physicochemical and biogeochemical processes are expected, if not already underway. These changes in sea-ice and ocean conditions will affect atmospheric processes by modifying the production of aerosols, aerosol precursors, reactive halogens and oxidants, and the exchange of greenhouse gases. Quantifying which processes will be enhanced or reduced by climate change calls for tailored monitoring programs for high-latitude ocean environments. Open questions in this coupled system will be best resolved by leveraging ongoing international and multidisciplinary programs, such as efforts led by SOLAS, to link research across the ocean–sea ice–atmosphere interface.
more »
« less
- Award ID(s):
- 1840868
- PAR ID:
- 10534774
- Publisher / Repository:
- University of California Press
- Date Published:
- Journal Name:
- Elem Sci Anth
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2325-1026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our understanding of sea ice and its role within Earth's climate system is underpinned by observation. Observations come in many forms, from qualitative records to quantitative data, and they have one key thing in common: they are made in situ. Direct measurements comprise most in situ observations; however, remote sensing technologies are also regularly used in situ to measure sea-ice physical properties. In this chapter, we provide an overview of in situ observations (including remote sensing) of sea ice from expeditions, drifting ice stations, autonomous platforms, and ongoing observation programs. We give a chronological account of sea-ice observations, highlighting the technological breakthroughs in sea-ice measurement techniques that have expanded observational capabilities. The chapter concludes with an outlook of future sea-ice observations and ways to bring observational and modeling efforts together to accelerate knowledge of the polar regions and Earth's climate.more » « less
-
Ocean biogeochemistry involves the production and consumption of an array of organic compounds and halogenated trace gases that influence the composition and reactivity of the atmosphere, air quality, and the climate system. Some of these molecules affect tropospheric ozone and secondary aerosol formation and impact the atmospheric oxidation capacity on both regional and global scales. Other emissions undergo transport to the stratosphere, where they contribute to the halogen burden and influence ozone. The oceans also comprise a major sink for highly soluble or reactive atmospheric gases. These issues are an active area of research by the SOLAS (Surface Ocean Lower Atmosphere) community. This article provides a status report on progress over the past decade, unresolved issues, and future research directions to understand the influence of ocean biogeochemistry on gas-phase atmospheric chemistry. Common challenges across the subject area involve establishing the role that biology plays in controlling the emissions of gases to the atmosphere and the inclusion of such complex processes, for example involving the sea surface microlayer, in large-scale global models.more » « less
-
Abstract The THINICE field campaign, based from Svalbard in August 2022, provided unique observations of summertime Arctic cyclones, their coupling with cloud cover, and interactions with tropopause polar vortices and sea ice conditions. THINICE was motivated by the need to advance our understanding of these processes and to improve coupled models used to forecast weather and sea ice, as well as long-term projections of climate change in the Arctic. Two research aircraft were deployed with complementary instrumentation. The Safire ATR42 aircraft, equipped with the RALI (RAdar-LIdar) remote sensing instrumentation and in-situ cloud microphysics probes, flew in the mid-troposphere to observe the wind and multi-phase cloud structure of Arctic cyclones. The British Antarctic Survey MASIN aircraft flew at low levels measuring sea-ice properties, including surface brightness temperature, albedo and roughness, and the turbulent fluxes that mediate exchange of heat and momentum between the atmosphere and the surface. Long duration instrumented balloons, operated by WindBorne Systems, sampled meteorological conditions within both cyclones and tropospheric polar vortices across the Arctic. Several novel findings are highlighted. Intense, shallow low-level jets along warm fronts were observed within three Arctic cyclones using the Doppler radar and turbulence probes. A detailed depiction of the interweaving layers of ice crystals and supercooled liquid water in mixed-phase clouds is revealed through the synergistic combination of the Doppler radar, the lidar and in-situ microphysical probes. Measurements of near-surface turbulent fluxes combined with remote sensing measurements of sea ice properties are being used to characterize atmosphere-sea ice interactions in the marginal ice zone.more » « less
-
Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice.more » « less
An official website of the United States government

