Among their numerous technological applications, semi-coherent oxide heterostructures have emerged as promising candidates for applications in intermediate temperature solid oxide fuel cell electrolytes, wherein interfaces influence ionic transport.Since misfit dislocations impact ionic transport in these materials, oxygen vacancy formation and migration at misfit dislocations in oxide heterostructures are central to their performance as an ionic conductor. Herein, we report high-throughput atomistic simulations to predict thousands of activation energy barriers for oxygen vacancy migration at misfit dislocations in SrTiO3/BaZrO3 heterostructures. Dopants display a noticeable effect as higher activation energies are uncovered in their vicinity. Interface layer chemistry has a fundamental influence on the magnitude of activation energy barriers since they are dissimilar at misfit dislocations as compared to coherent terraces. Lower activation energies are uncovered when oxygen vacancies migrate toward misfit dislocations, but higher energies when they hop away, revealing that oxygen vacancies would get trapped at misfit dislocations and impact ionic transport. The results herein offer atomic scale insights into ionic transport at misfit dislocations and fundamental factors governing the ionic conductivity of thin film oxide electrolytes.
This content will become publicly available on August 13, 2025
Mismatched complex oxide thin films and heterostructures have gained significant traction for use as electrolytes in intermediate temperature solid oxide fuel cells, wherein interfaces exhibit variation in ionic conductivity as compared to the bulk. Although misfit dislocations present at interfaces in these structures impact ionic conductivity, the fundamental mechanisms responsible for this effect are not well understood. To this end, a kinetic lattice Monte Carlo (KLMC) model was developed to trace oxygen vacancy diffusion at misfit dislocations in SrTiO3/BaZrO3 heterostructures and elucidate the atomistic mechanisms governing ionic diffusion at oxide interfaces. The KLMC model utilized oxygen vacancy migration energy barriers computed using molecular statics. While some interfaces promote oxygen vacancy diffusion, others impede their transport. Fundamental factors such as interface layer chemistry, misfit dislocation structure, and starting and ending sites of migrating ions play a crucial role in oxygen diffusivity. Molecular dynamics (MD) simulations were further performed to support qualitative trends for oxygen vacancy diffusion. Overall, the agreement between KLMC and MD is quite good, though MD tends to predict slightly higher conductivities, perhaps a reflection of nuanced structural relaxations that are not captured by KLMC. The current framework comprising KLMC modeling integrated with molecular statics offers a powerful tool to perform mechanistic studies focused on ionic transport in thin film oxide electrolytes and facilitate their rational design.
more » « less- Award ID(s):
- 2042311
- PAR ID:
- 10534843
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 12
- Issue:
- 32
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 21252 to 21267
- Subject(s) / Keyword(s):
- Thin film oxide electrolytes Ionic conductivity Kinetic Lattice Monte Carlo modeling Molecular dynamics Misfit dislocations Oxide interfaces
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a molecular dynamics study of the thermal transport properties of PbTe/PbSe (111) and PbTe/PbSe (100) interfaces at room temperature. The PbTe/PbSe heterostructures are obtained through simulations of the kinetic processes of direct bonding of PbTe and PbSe crystals. The atomic-scale dislocation core structures and the misfit dislocation networks in the heterostructures obtained in the simulations are found to closely match experimental data. Two types of heat transfer experiments are then simulated: a heat-sink heat-source experiment and an ultrashort heat pulse experiment. Thermal boundary resistance is calculated for three distinct interface types: coherent, semi-coherent, and semi-coherent with pinned dislocations. Both types of simulations consistently capture the significant role of the misfit dislocations on thermal resistance. The effect of the mobility of dislocations on thermal resistance is demonstrated for the first time through comparing the thermal boundary resistance of interfaces containing pinned dislocations and with those containing unpinned dislocations. In addition, the thermal boundary resistance is found to strongly depend on the length of the specimen and the area of the interface.more » « less
-
Lithium-rich oxychloride antiperovskites are promising solid electrolytes for enabling next-generation batteries. Here, we report a comprehensive study varying Li + concentrations in Li 3 OCl using ab initio molecular dynamics simulations. The simulations accurately capture the complex interactions between Li + vacancies ( V Li ′ ), the dominant mobile species in Li 3 OCl . The V Li ′ polarize and distort the host lattice, inducing additional non-vacancy-mediated diffusion mechanisms and correlated diffusion events that reduce the activation energy barrier at concentrations as low as 1.5% V Li ′ . Our analyses of discretized diffusion events in both space and time illustrate the critical interplay between correlated dynamics, polarization and local distortion in promoting ionic conductivity in Li 3 OCl . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.more » « less
-
Abstract A variety of mechanisms are reported to play critical roles in contributing to the high carrier/electron mobility in oxide/SrTiO3(STO) heterostructures. By using La0.95Sr0.05TiO3(LSTO) epitaxially grown on different single crystal substrates (such as STO, GdScO3, LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and CeO2buffered STO) as the model systems, the formation of a conducting substrate surface layer (CSSL) on STO substrate is shown at relatively low growth temperature and high oxygen pressure (725 °C, 5 × 10–4 Torr), which contributes to the enhanced conductivity of the LSTO/STO heterostructures. Different from the conventional oxygen vacancy model, this work reveals that the formation of the CSSL occurs when growing an oxide layer (LSTO in this case) on STO, while neither annealing nor the growth of an Au layer alone at the exact same growth condition generates the CSSL in STO. It demonstrates that the oxide layer actively pulls oxygen from STO substrate at given growth conditions, leading to the formation of the CSSL. The observations emphasize the oxygen transfer across film/substrate interface during the synthesis of oxide heterostructures playing a critical role in functional properties.
-
Haven and Verkerk studied the diffusion of ions in ionic conductive glasses with and without an external electric field to better understand the mechanisms behind ionic conductivity. In their work, they introduced the concept now known as Haven’s ratio (H R ), which is defined as the ratio of the tracer diffusion coefficient (D self ) of ions to the diffusion coefficient from steady-state ionic conductivity (D σ ), calculated by the Nernst–Einstein equation. D σ can be challenging to obtain experimentally because the number of charge carriers has to be implied, a subject still under discussion in the literature. Molecular dynamics (MD) allows for direct measurement of the mean squared displacement ( r 2 ) of diffusing cations, which can be used to calculate D, avoiding the definition of a charge carrier. Using MD, the authors have calculated the r 2 of three alkali ions (Li, Na, and K) at different temperatures and concentrations in silicate glass, with and without the influence of an electric field. Results found for H R generally fell close to 0.6 at lower concentrations (x = 0.1) and close to 0.3 at higher concentrations (x = 0.2 and 0.3), comparable to the literature, implying that the electric field introduces new mechanisms for the diffusion of ions and that MD can be a powerful tool to study ionic diffusion in glasses under external electric fields.more » « less