This content will become publicly available on July 1, 2025
- Award ID(s):
- 1751363
- NSF-PAR ID:
- 10534901
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Bulletin of the American Meteorological Society
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- ISSN:
- 0003-0007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales.more » « less
-
Abstract Observations show predictive skill of the minimum sea ice extent (Min SIE) from late winter anomalous offshore ice drift along the Eurasian coastline, leading to local ice thickness anomalies at the onset of the melt season—a signal then amplified by the ice–albedo feedback. We assess whether the observed seasonal predictability of September sea ice extent (Sept SIE) from Fram Strait Ice Area Export (FSIAE; a proxy for Eurasian coastal divergence) is present in global climate model (GCM) large ensembles, namely the CESM2-LE, GISS-E2.1-G, FLOR-LE, CNRM-CM6-1, and CanESM5. All models show distinct periods where winter FSIAE anomalies are negatively correlated with the May sea ice thickness (May SIT) anomalies along the Eurasian coastline, and the following Sept Arctic SIE, as in observations. Counterintuitively, several models show occasional periods where winter FSIAE anomalies are positively correlated with the following Sept SIE anomalies when the mean ice thickness is large, or late in the simulation when the sea ice is thin, and/or when internal variability increases. More important, periods with weak correlation between winter FSIAE and the following Sept SIE dominate, suggesting that summer melt processes generally dominate over late-winter preconditioning and May SIT anomalies. In general, we find that the coupling between the winter FSIAE and ice thickness anomalies along the Eurasian coastline at the onset of the melt season is a ubiquitous feature of GCMs and that the relationship with the following Sept SIE is dependent on the mean Arctic sea ice thickness.
-
Abstract. Basic statistical metrics such as autocorrelations and across-region lagcorrelations of sea ice variations provide benchmarks for the assessments offorecast skill achieved by other methods such as more sophisticatedstatistical formulations, numerical models, and heuristic approaches. In thisstudy we use observational data to evaluate the contribution of the trend tothe skill of persistence-based statistical forecasts of monthly and seasonalice extent on the pan-Arctic and regional scales. We focus on the BeaufortSea for which the Barnett Severity Index provides a metric of historicalvariations in ice conditions over the summer shipping season. The varianceabout the trend line differs little among various methods of detrending(piecewise linear, quadratic, cubic, exponential). Application of thepiecewise linear trend calculation indicates an acceleration of the winterand summer trends during the 1990s. Persistence-based statistical forecastsof the Barnett Severity Index as well as September pan-Arctic ice extent showsignificant statistical skill out to several seasons when the data includethe trend. However, this apparent skill largely vanishes when the data aredetrended. In only a few regions does September ice extent correlatesignificantly with antecedent ice anomalies in the same region more than 2months earlier. The springtime “predictability barrier” in regionalforecasts based on persistence of ice extent anomalies is not reduced by theinclusion of several decades of pre-satellite data. No region showssignificant correlation with the detrended September pan-Arctic ice extent atlead times greater than a month or two; the concurrent correlations arestrongest with the East Siberian Sea. The Beaufort Sea's ice extent as farback as July explains about 20 % of the variance of the Barnett SeverityIndex, which is primarily a September metric. The Chukchi Sea is the onlyother region showing a significant association with the Barnett SeverityIndex, although only at a lead time of a month or two.more » « less
-
Abstract The fast decline of Arctic sea ice necessitates a stronger focus on understanding the Arctic sea ice predictability and developing advanced forecast methods for all seasons and for pan-Arctic and regional scales. In this study, the operational forecasting system combining an advanced eddy-permitting ocean–sea ice ensemble reanalysis ORAS5 and state-of-the-art seasonal model-based forecasting system SEAS5 is used to investigate effects of sea ice dynamics and thermodynamics on seasonal (growth-to-melt) Arctic sea ice predictability in 1993–2020. We demonstrate that thermodynamics (growth/melt) dominates the seasonal evolution of mean sea ice thickness at pan-Arctic and regional scales. The thermodynamics also dominates the seasonal predictability of sea ice thickness at pan-Arctic scale; however, at regional scales, the predictability is dominated by dynamics (advection), although the contribution from ice growth/melt remains perceptible. We show competing influences of sea ice dynamics and thermodynamics on the temporal change of ice thickness predictability from 1993–2006 to 2007–20. Over these decades, there was increasing predictability due to growth/melt, attributed to increased winter ocean heat flux in both Eurasian and Amerasian basins, and decreasing predictability due to advection. Our results demonstrate an increasing impact of advection on seasonal sea ice predictability as the region of interest becomes smaller, implying that correct modeling of sea ice drift is crucial for developing reliable regional sea ice predictions. This study delivers important information about sea ice predictability in the “new Arctic” conditions. It increases awareness regarding sea ice state and implementation of sea ice forecasts for various scientific and practical needs that depend on accurate seasonal sea ice forecasts.
-
null (Ed.)Abstract Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends.more » « less