Sepsis, a dysregulated immune-mediated host response to infection, is lethal, prevalent, and costly. It’s early detection has the potential to drastically reduce morbidity/mortality. We have developed a real-time cloud-based application that predicts onset-time of sepsis based on live ICU data and provides clinicians with actionable visual alerts. Clinicians and nurses can examine these alerts and initiate appropriate interventions. The prediction engine (DeepAISE) is a Deep Learning-based algorithm trained to reliably predict sepsis 4-6 hours in advance of clinical recognition. A scalable, cloud-based, system continuously streams bedside data and uses the prediction engine to generate hourly scores and displays these to clinicians. Interoperability is achieved through the use of FHIR resources and APIs. This system is monitoring ~100 patients on a daily basis at the Emory Tele-ICU center, and has been shown to reliably predict onset of sepsis with an AUC of 0.9.
more »
« less
Model-driven engineering for digital twins: a graph model-based patient simulation application
IntroductionDigital twins of patients are virtual models that can create a digital patient replica to test clinical interventionsin silicowithout exposing real patients to risk. With the increasing availability of electronic health records and sensor-derived patient data, digital twins offer significant potential for applications in the healthcare sector. MethodsThis article presents a scalable full-stack architecture for a patient simulation application driven by graph-based models. This patient simulation application enables medical practitioners and trainees to simulate the trajectory of critically ill patients with sepsis. Directed acyclic graphs are utilized to model the complex underlying causal pathways that focus on the physiological interactions and medication effects relevant to the first 6 h of critical illness. To realize the sepsis patient simulation at scale, we propose an application architecture with three core components, a cross-platform frontend application that clinicians and trainees use to run the simulation, a simulation engine hosted in the cloud on a serverless function that performs all of the computations, and a graph database that hosts the graph model utilized by the simulation engine to determine the progression of each simulation. ResultsA short case study is presented to demonstrate the viability of the proposed simulation architecture. DiscussionThe proposed patient simulation application could help train future generations of healthcare professionals and could be used to facilitate clinicians’ bedside decision-making.
more »
« less
- PAR ID:
- 10534940
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Physiology
- Volume:
- 15
- ISSN:
- 1664-042X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Digital Twin (DT) technology offers real-time monitoring, simulation, optimization, and precise forecasting. However, its theoretical framework and practical implementation, particularly in digital random controlled trials (RCT), remain underdeveloped, limiting its full potential. Therefore, we seek to develop an application of digital twins with the virtual reality using data from four longitudinal RCT in Massachusetts. As case studies, we create digital twins of two individuals from these RCT. This application of digital twins provides an avenue for a more personalized healthcare experience for patients, the enhancement of medical simulations, and a visualization for predictive analytics. In the future, we will move from virtual reality to extended reality with AI-generated digital twin models.more » « less
-
Abstract ObjectivesTo quantify differences between (1) stratifying patients by predicted disease onset risk alone and (2) stratifying by predicted disease onset risk and severity of downstream outcomes. We perform a case study of predicting sepsis. Materials and MethodsWe performed a retrospective analysis using observational data from Michigan Medicine at the University of Michigan (U-M) between 2016 and 2020 and the Beth Israel Deaconess Medical Center (BIDMC) between 2008 and 2012. We measured the correlation between the estimated sepsis risk and the estimated effect of sepsis on mortality using Spearman’s correlation. We compared patients stratified by sepsis risk with patients stratified by sepsis risk and effect of sepsis on mortality. ResultsThe U-M and BIDMC cohorts included 7282 and 5942 ICU visits; 7.9% and 8.1% developed sepsis, respectively. Among visits with sepsis, 21.9% and 26.3% experienced mortality at U-M and BIDMC. The effect of sepsis on mortality was weakly correlated with sepsis risk (U-M: 0.35 [95% CI: 0.33-0.37], BIDMC: 0.31 [95% CI: 0.28-0.34]). High-risk patients identified by both stratification approaches overlapped by 66.8% and 52.8% at U-M and BIDMC, respectively. Accounting for risk of mortality identified an older population (U-M: age = 66.0 [interquartile range—IQR: 55.0-74.0] vs age = 63.0 [IQR: 51.0-72.0], BIDMC: age = 74.0 [IQR: 61.0-83.0] vs age = 68.0 [IQR: 59.0-78.0]). DiscussionPredictive models that guide selective interventions ignore the effect of disease on downstream outcomes. Reformulating patient stratification to account for the estimated effect of disease on downstream outcomes identifies a different population compared to stratification on disease risk alone. ConclusionModels that predict the risk of disease and ignore the effects of disease on downstream outcomes could be suboptimal for stratification.more » « less
-
Abstract Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as “proof of concept” regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.more » « less
-
BackgroundDigital twins are computerized patient replicas that allow clinical interventions testingin silicoto minimize preventable patient harm. Our group has developed a novel application software utilizing a digital twin patient model based on electronic health record (EHR) variables to simulate clinical trajectories during the initial 6 h of critical illness. This study aimed to assess the usability, workload, and acceptance of the digital twin application as an educational tool in critical care. MethodsA mixed methods study was conducted during seven user testing sessions of the digital twin application with thirty-five first-year internal medicine residents. Qualitative data were collected using a think-aloud and semi-structured interview format, while quantitative measurements included the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and a short survey. ResultsMedian SUS scores and NASA-TLX were 70 (IQR 62.5–82.5) and 29.2 (IQR 22.5–34.2), consistent with good software usability and low to moderate workload, respectively. Residents expressed interest in using the digital twin application for ICU rotations and identified five themes for software improvement: clinical fidelity, interface organization, learning experience, serious gaming, and implementation strategies. ConclusionA digital twin application based on EHR clinical variables showed good usability and high acceptance for critical care education.more » « less
An official website of the United States government

