skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of volatility, non‐stoichiometry, and atmospheres in perovskite piezoelectric and dielectric materials
Abstract Defect chemistry that results in the thermal processing of dielectric and piezoelectric films, crystals and ceramics ultimately controls the properties and long‐term performance of materials and devices. This paper reviews several thermochemical defect reactions using important perovskite base composition dielectrics including Pb(Zr,Ti)O3, (Na,K)NbO3, (Bi0.5Na0.5)TiO3‒BaTiO3, and Ca(Hf,Ti,Mn)O3. Within this group of perovskite‐based functional materials, we note ways the point defects can be formed to create non‐stoichiometric compositions changing the overall cation‐to‐anion ratios during the synthesis process. These reactions can be developed with the loss of volatile species such as metal and oxygen ions. The relative concentrations of these can impact the over conductions in terms of the mixed contributions of ionic conductivity from the oxygen vacancies and the electronic conductivity, along with microstructure and properties in some cases.  more » « less
Award ID(s):
1841453
PAR ID:
10535218
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
107
Issue:
12
ISSN:
0002-7820
Format(s):
Medium: X Size: p. 7921-7938
Size(s):
p. 7921-7938
Sponsoring Org:
National Science Foundation
More Like this
  1. Na-ion conducting solid electrolytes can enable both the enhanced safety profile of all-solid-state-batteries and the transition to an earth-abundant charge-carrier for large-scale stationary storage. In this work, we developed new perovskite-structured Na-ion conductors from the analogous fast Li-ion conducting Li 3 x La 2/3− x TiO 3 (LLTO), testing strategies of chemo-mechanical and defect engineering. Na x La 2/3−1/3 x ZrO 3 (NLZ) and Na x La 1/3−1/3 x Ba 0.5 ZrO 3 (NLBZ) were prepared using a modified Pechini method with varying initial stoichiometries and sintering temperatures. With the substitution of larger framework cations Zr 4+ and Ba 2+ on B- and A-sites respectively, NLZ and NLBZ both had larger lattice parameters compared to LLTO, in order to accommodate and potentially enhance the transport of larger Na ions. Additionally, we sought to introduce Na vacancies through (a) sub-stoichiometric Na : La ratios, (b) Na loss during sintering, and (c) donor doping with Nb. AC impedance spectroscopy and DC polarization experiments were performed on both Na 0.5 La 0.5 ZrO 3 and Na 0.25 La 0.25 Ba 0.5 ZrO 3 in controlled gas environments (variable oxygen partial pressure, humidity) at elevated temperatures to quantify the contributions of various possible charge carriers (sodium ions, holes, electrons, oxygen ions, protons). Our results showed that the lattice-enlarged NLZ and NLBZ exhibited ∼19× (conventional sintering)/49× (spark plasma sintering) and ∼7× higher Na-ion conductivities, respectively, compared to unexpanded Na 0.42 La 0.525 TiO 3 . Moreover, the Na-ion conductivity of Na 0.5 La 0.5 ZrO 3 is comparable with that of NaNbO 3 , despite having half the carrier concentration. Additionally, more than 96% of the total conductivity in dry conditions was contributed by sodium ions for both compositions, with negligible electronic conductivity and little oxygen ion conductivity. We also identified factors that limited Na-ion transport: NLZ and NLBZ were both challenging to densify using conventional sintering without the loss of Na because of its volatility. With spark plasma sintering, higher density can be achieved. In addition, the NLZ perovskite phase appeared unable to accommodate significant Na deficiency, whereas NLBZ allowed some. Density functional theory calculations supported a thermodynamic limitation to creation of Na-deficient NLZ in favor of a pyrochlore-type phase. Humid environments generated different behavior: in Na 0.25 La 0.25 Ba 0.5 ZrO 3 , incorporated protons raised total conductivity, whereas in Na 0.5 La 0.5 ZrO 3 , they lowered total conductivity. Ultimately, this systematic approach revealed both effective approaches and limitations to achieving super-ionic Na-ion conductivity, which may eventually be overcome through alternative processing routes. 
    more » « less
  2. Abstract Layered oxide cathode with a Li‐O‐vacancy configuration offers high capacity by leveraging additional oxygen redox reactions. However, it faces severe challenges of sluggish kinetics of oxygen redox reactions and lattice oxygen loss, resulting in slow Li+diffusion and rapid electrochemical degradation. Herein, Ti is introduced as electrochemical inactive element into Li‐O‐vacancy configuration to form Mn/vacancy/Ti arrangement within transition metal layers of layered oxide, achieving a marked increase in average output voltage at high current density compared with Ti‐free counterpart. Not only voltage hysteresis between charge and discharge processes can be significantly reduced, but rate capability can be heightened in Li4/7[□1/7Ti1/7Mn5/7]O2by means of retrained over‐potential and improved Li+diffusivity. Furthermore, theoretical calculations suggest that these improvements stem from Ti substitution, which elongates the Li─O bond and lowers the Li+migration energy barrier. Besides, in situ differential electrochemical mass spectrometry and soft X‐ray absorption spectroscopy reveal the modified Li‐O‐vacancy configuration enables reversible anionic and cationic redox behaviors during cycling. These findings provide a promising strategy for tailoring oxygen redox activity and accelerating Li+diffusion kinetics in layered cathode materials with oxygen redox chemistry. 
    more » « less
  3. Abstract Epitaxial strain has been shown to produce dramatic changes to the orbital structure in transition metal perovskite oxides and, in turn, the rate of oxygen electrocatalysis therein. Here, epitaxial strain is used to investigate the relationship between surface electronic structure and oxygen electrocatalysis in prototypical fuel cell cathode systems. Combining high‐temperature electrical‐conductivity‐relaxation studies and synchrotron‐based X‐ray absorption spectroscopy studies of La0.5Sr0.5CoO3and La0.8Sr0.2Co0.2Fe0.8O3thin films under varying degrees of epitaxial strain reveals a strong correlation between orbital structure and catalysis rates. In both systems, films under biaxial tensile strain simultaneously exhibit the fastest reaction kinetics and lowest electron occupation in thedz2orbitals. These results are discussed in the context of broader chemical trends and electronic descriptors are proposed for oxygen electrocatalysis in transition metal perovskite oxides. 
    more » « less
  4. Abstract Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability tocontinuouslytune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ(LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (withδ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (withδ= 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications. 
    more » « less
  5. The significant role of perovskite defect chemistry through A-site doping of strontium titanate with lanthanum for CO 2 electrolysis properties is demonstrated. Here we present a dual strategy of A-site deficiency and promoting adsorption/activation by making use of redox active dopants such as Mn/Cr linked to oxygen vacancies to facilitate CO 2 reduction at perovskite titanate cathode surfaces. Solid oxide electrolysers based on oxygen-excess La 0.2 Sr 0.8 Ti 0.9 Mn(Cr) 0.1 O 3+δ , A-site deficient (La 0.2 Sr 0.8 ) 0.9 Ti 0.9 Mn(Cr) 0.1 O 3−δ and undoped La 0.2 Sr 0.8 Ti 1.0 O 3+δ cathodes are evaluated. In situ infrared spectroscopy reveals that the adsorbed and activated CO 2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The double strategy leads to optimal performance being observed after 100 h of high-temperature operation and 3 redox cycles, suggesting a promising cathode material for CO 2 electrolysis. 
    more » « less