Ruddlesden–Popper perovskites (RPPs) are promising materials for optoelectronic devices. While iodide‐based RPPs are well‐studied, the crystallization of mixed‐halide RPPs remains less explored. Understanding the factors affecting their formation and crystallization are vital for optimizing morphology, phase purity, and orientation, which directly impact device performance. Here, we investigate the crystallization and properties of mixed‐halide RPPs (PEA)2FAn−1Pbn(Br1/3I2/3)3n + 1(PEA = C6H5(CH2)2NH3+and FA = CH(NH2)2+) (n = 1, 5, 10) using DMSO ((CH3)2SO) or NMP (OC4H6NCH3) as cosolvents and MACl (MA = CH3NH3+) as an additive. For the first time, the presence of planar defects in RPPs is directly observed by in situ grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and confirmed through the simulation of the patterns that matched the experimental. GIWAXS data also reveals that DMSO promotes higher crystallinity and vertical orientation, while MACl enhances crystal quality but increases halide segregation, shown here by nano X‐ray fluorescence (nano‐XRF) experiments. For low‐n RPPs, orientation is crucial for solar cell efficiency, but its impact decreases with increasing n. Our findings provide insights into optimizing mixed‐halide RPPs, guiding strategies to improve crystallization, phase control, and orientation for better performance not only in solar cells but also in other potential optoelectronic devices.
more »
« less
Optimization of surface passivation for suppressing leakage current in GaSb PIN devices
The suppression of leakage current via surface passivation plays a critical role for GaSb‐based optoelectronic devices. In this Letter the authors carefully optimise the sulfur passivation parameters for improving the performance of GaSb p–i–n devices. Two competing processes are evaluated during the sulfur passivation process: the hydrolysis of HS–ions that aide surface passivation and the re‐oxidation, respectively. Upon the optimisation of sulfur passivation parameters and subsequent encapsulation with atomic layer deposition Al2O3, the surface resistivity significantly increased from 4.3 kΩ.cm to 28.6 kΩ.cm, leading to a 19.1 times drop in dark current at room temperature for the GaSb p–i–n structure. This Letter provides a repeatable and stable passivation approach for improving the optoelectronic performance of GaSb‐based devices.
more »
« less
- Award ID(s):
- 1810507
- PAR ID:
- 10570603
- Publisher / Repository:
- DOI PREFIX: 10.1049
- Date Published:
- Journal Name:
- Electronics Letters
- Volume:
- 56
- Issue:
- 25
- ISSN:
- 0013-5194
- Format(s):
- Medium: X Size: p. 1420-1423
- Size(s):
- p. 1420-1423
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper investigates the microscale engineering aspects of n-type doped GaSb to address the challenges associated with achieving high electrical conductivity and precise dopant distribution in this semiconductor material. AC impedance spectroscopy is employed as a reliable technique to characterize the microstructural and electrical properties of GaSb, providing valuable insights into the impact of grain boundaries on overall electrical performance. The uneven distribution of dopants, caused by diffusion, and the incomplete activation of introduced dopants pose significant obstacles in achieving consistent material properties. To overcome these challenges, a careful selection of alloying elements, such as bismuth, is explored to suppress the formation of native acceptor defects and modulate band structures, thereby influencing the doping and compensator formation processes. Additionally, the paper examines the effect of microwave annealing as a potential solution for enhancing dopant activation, minimizing diffusion, and reducing precipitate formation. Microwave annealing shows promise due to its rapid heating and shorter processing times, making it a viable alternative to traditional annealing methods. The study underscores the need for a stable grain boundary passivation strategy to achieve significant improvements in GaSb material performance. Simple grain size reduction strategies alone do not result in better thermoelectric performance, for example, and increasing the grain boundary area per unit volume exacerbates the issue of free carrier compensation. These findings highlight the complexity of achieving optimal doping in GaSb materials and the importance of innovative analytical techniques and controlled doping processes. The comprehensive exploration of n-type doped GaSb presented in this research provides valuable insights for future advancements in the synthesis and optimization of high-conductivity nanostructured n-type GaSb, with potential applications in thermoelectric devices and other electronic systems.more » « less
-
Abstract In this work, TiO2thin films deposited by the atomic layer deposition (ALD) method were treated with a special N2O plasma surface treatment and used as the gate dielectric for AlGaN/GaN metal insulator semiconductor high electron mobility transistors (MISHEMTs). The N2O plasma surface treatment effectively reduces defects in the oxide during low-temperature ALD growth. In addition, it allows oxygen atoms to diffuse into the device cap layer to increase the barrier height and thus reduce the gate leakage current. These TiO2films exhibit a dielectric constant of 54.8 and a two-terminal current of 1.96 × 10−10A mm−1in 2μm distance. When applied as the gate dielectric, the AlGaN/GaN MISHEMT with a 2μm-gate-length shows a high on/off ratio of 2.59 × 108and a low subthreshold slope (SS) of 84 mV dec−1among all GaN MISHEMTs using TiO2as the gate dielectric. This work provides a feasible way to significantly improve the TiO2film electrical property for gate dielectrics, and it suggests that the developed TiO2dielectric is a promising high-κgate oxide and a potential passivation layer for GaN-based MISHEMTs, which can be further extended to other transistors.more » « less
-
UV‐ranged micro‐LEDs are being explored for numerous applications due to their high stability and power efficiency. However, previous reports have shown reduced external quantum efficiency (EQE) and increased leakage current due to the increase in surface‐to‐volume ratio with a decrease in the micro‐LED size. Herein, the size‐related performance for UV‐A micro‐LEDs, ranging from 8 × 8 to 100 × 100 μm2, is studied. These devices exhibit reduced leakage current with the implementation of atomic layer deposition‐based sidewall passivation. A systematic EQE comparison is performed with minimal leakage current and a size‐independent on‐wafer EQE of around 5.5% is obtained. Smaller sized devices experimentally show enhanced EQE at high current density due to their improved heat dissipation capabilities. To the best of authors’ knowledge, this is the highest reported on‐wafer EQE demonstrated in <10 μm dimensioned 368 nm UV LEDs.more » « less
-
Abstract GaAs is well known for its extremely high electron mobility and direct band gap. Owing to the technological advances in silicon-based technology, GaAs has been limited to niche areas. This paper discusses the application of GaAs in molecular electronics and spintronics as a potential field for considering this amazing but challenging material. GaAs is challenging because its surface is characterized by a high density of surface states, which precludes the utilization of this semiconducting material in mainstream devices. Sulfur(S)-based passivation has been found to be significantly useful for reducing the effect of dangling bonds and was researched thoroughly. GaAs applications in molecular spintronics and electronics can benefit significantly from prior knowledge of GaAs and S interactions because S is a popular functional group for bonding molecular device elements with different semiconductors and metals. In this article, the problem associated with the GaAs surface is discussed in a tutorial form. A wide variety of surface passivation methods has been briefly introduced. We attempted to highlight the significant differences in the S-GaAs interactions for different S passivation methods. We also elaborate on the mechanisms and atomic-scale understanding of the variation in surface chemistry and reconstruction due to various S passivation methods. It is envisioned that GaAs and thiol-terminated molecule-based novel devices can exhibit innovative device characteristics and bring the added advantage of S-based passivation.more » « less
An official website of the United States government
