Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Data from high-energy observations are usually obtained as lists of photon events. A common analysis task for such data is to identify whether diffuse emission exists, and to estimate its surface brightness, even in the presence of point sources that may be superposed. We have developed a novel nonparametric event list segmentation algorithm to divide up the field of view into distinct emission components. We use photon location data directly, without binning them into an image. We first construct a graph from the Voronoi tessellation of the observed photon locations and then grow segments using a new adaptation of seeded region growing that we callSeeded Region Growing on Graph, after which the overall method is namedSRGonG. Starting with a set of seed locations, this results in an oversegmented data set, whichSRGonGthen coalesces using a greedy algorithm where adjacent segments are merged to minimize a model comparison statistic; we use the Bayesian Information Criterion. UsingSRGonGwe are able to identify point-like and diffuse extended sources in the data with equal facility. We validateSRGonGusing simulations, demonstrating that it is capable of discerning irregularly shaped low-surface-brightness emission structures as well as point-like sources with strengths comparable to that seen in typical X-ray data. We demonstrateSRGonG’s use on the Chandra data of the Antennae galaxies and show that it segments the complex structures appropriately.more » « less
-
Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available athttps://github.com/frnliang/refined_reweighing.more » « less
-
In this paper, we propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors and make it easier to simulate the output distribution of a deep neural network. With these observations, we propose a novel Bayesian adversarial example detector, short for BATER, to improve the performance of adversarial example detection. Specifically, we study the distributional difference of hidden layer output between natural and adversarial examples, and propose to use the randomness of the Bayesian neural network to simulate hidden layer output distribution and leverage the distribution dispersion to detect adversarial examples. The advantage of a Bayesian neural network is that the output is stochastic while a deep neural network without random components does not have such characteristics. Empirical results on several benchmark datasets against popular attacks show that the proposed BATER outperforms the state-of-the-art detectors in adversarial example detection.more » « less
An official website of the United States government

Full Text Available