skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limit pretrees for free group automorphisms: existence
Abstract To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element. This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals).  more » « less
Award ID(s):
1926686
PAR ID:
10535341
Author(s) / Creator(s):
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
12
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $$2$$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G , then it is of $p'$ -order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$ -subgroups. We present two applications of this last result, one to tame fusion systems. 
    more » « less
  2. Abstract We prove that if is the mapping torus group of an injective endomorphism of a free group (of possibly infinite rank), then every two‐generator subgroup of is either free or a (finitary) sub‐mapping torus. As an application we show that if is a fully irreducible atoroidal automorphism, then every two‐generator subgroup of is either free or has finite index in . 
    more » « less
  3. Abstract For a mixing shift of finite type, the associated automorphism group has a rich algebraic structure, and yet we have few criteria to distinguish when two such groups are isomorphic. We introduce a stabilization of the automorphism group, study its algebraic properties, and use them to distinguish many of the stabilized automorphism groups. We also show that for a full shift, the subgroup of the stabilized automorphism group generated by elements of finite order is simple and that the stabilized automorphism group is an extension of a free abelian group of finite rank by this simple group. 
    more » « less
  4. Abstract Given a lattice Veech group in the mapping class group of a closed surface , this paper investigates the geometry of , the associated ‐extension group. We prove that is the fundamental group of a bundle with a singular Euclidean‐by‐hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of on a hyperbolic space, retaining most of the geometry of . This action is a key ingredient in the sequel where we show that is hierarchically hyperbolic and quasi‐isometrically rigid. 
    more » « less
  5. Abstract Prokhorov and Shramov proved that the BAB conjecture, which Birkar later proved, implies the uniform Jordan property for automorphism groups of complex Fano varieties of fixed dimension.This property in particular gives an upper bound on the size of finite semi-simple groups (i.e., those with no nontrivial normal abelian subgroups) acting faithfully on 𝑛-dimensional complex Fano varieties, and this bound only depends on 𝑛.We investigate the geometric consequences of an action by a certain semi-simple group: the symmetric group.We give an effective upper bound for the maximal symmetric group action on an 𝑛-dimensional Fano variety.For certain classes of varieties – toric varieties and Fano weighted complete intersections – we obtain optimal upper bounds.Finally, we draw a connection between large symmetric actions and boundedness of varieties, by showing that the maximally symmetric Fano fourfolds form a bounded family.Along the way, we also show analogues of some of our results for Calabi–Yau varieties and log terminal singularities. 
    more » « less