Long document summarization systems are critical for domains with lengthy and jargonladen text, yet they present significant challenges to researchers and developers with limited computing resources. Existing solutions mainly focus on efficient attentions or divideand- conquer strategies. The former reduces theoretical time complexity, but is still memoryheavy. The latter methods sacrifice global context, leading to uninformative and incoherent summaries. This work aims to leverage the memory-efficient nature of divide-and-conquer methods while preserving global context. Concretely, our framework AWESOME uses two novel mechanisms: (1) External memory mechanisms track previously encoded document segments and their corresponding summaries, to enhance global document understanding and summary coherence. (2) Global salient content is further identified beforehand to augment each document segment to support its summarization. Extensive experiments on diverse genres of text, including government reports, meeting transcripts, screenplays, scientific papers, and novels, show that AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents, while having a smaller GPU memory footprint.
more »
« less
Length-Aware Multi-Kernel Transformer for Long Document Classification
Lengthy documents pose a unique challenge to neural language models due to substantial memory consumption. While existing state-of-the-art (SOTA) models segment long texts into equal-length snippets (e.g., 128 tokens per snippet) or deploy sparse attention networks, these methods have new challenges of context fragmentation and generalizability due to sentence boundaries and varying text lengths. For example, our empirical analysis has shown that SOTA models consistently overfit one set of lengthy documents (e.g., 2000 tokens) while performing worse on texts with other lengths (e.g., 1000 or 4000). In this study, we propose a Length-Aware Multi-Kernel Transformer (LAMKIT) to address the new challenges for the long document classification. LAMKIT encodes lengthy documents by diverse transformer-based kernels for bridging context boundaries and vectorizes text length by the kernels to promote model robustness over varying document lengths. Experiments on five standard benchmarks from health and law domains show LAMKIT outperforms SOTA models up to an absolute 10.9% improvement. We conduct extensive ablation analyses to examine model robustness and effectiveness over varying document lengths.
more »
« less
- Award ID(s):
- 2318210
- PAR ID:
- 10535361
- Publisher / Repository:
- Association for Computational Linguistics
- Date Published:
- Page Range / eLocation ID:
- 278-290
- Format(s):
- Medium: X
- Location:
- Mexico City, Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the advent of pre-trained language models (LMs), increasing research efforts have been focusing on infusing commonsense and domain-specific knowledge to prepare LMs for downstream tasks. These works attempt to leverage knowledge graphs, the de facto standard of symbolic knowledge representation, along with pre-trained LMs. While existing approaches leverage external knowledge, it remains an open question how to jointly incorporate knowledge graphs represented in varying contexts — from local (e.g., sentence), document-level, to global knowledge, to enable knowledge-rich and interpretable exchange across contexts. In addition, incorporating varying contexts can especially benefit long document understanding tasks that leverage pre-trained LMs, typically bounded by the input sequence length. In light of these challenges, we propose KALM, a language model that jointly leverages knowledge in local, document-level, and global contexts for long document understanding. KALM firstly encodes long documents and knowledge graphs into the three knowledge-aware context representations. KALM then processes each context with context-specific layers. These context-specific layers are followed by a ContextFusion layer that facilitates knowledge exchange to derive an overarching document representation. Extensive experiments demonstrate that KALM achieves state-of-the-art performance on three long document understanding tasks across 6 datasets/settings. Further analyses reveal that the three knowledge-aware contexts are complementary and they all contribute to model performance, while the importance and information exchange patterns of different contexts vary on different tasks and datasets.more » « less
-
The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall.more » « less
-
Duplicate documents are a pervasive problem in text datasets and can have a strong effect on unsupervised models. Methods to remove duplicate texts are typically heuristic or very expensive, so it is vital to know when and why they are needed. We measure the sensitivity of two latent semantic methods to the presence of different levels of document repetition. By artificially creating different forms of duplicate text we confirm several hypotheses about how repeated text impacts models. While a small amount of duplication is tolerable, substantial over-representation of subsets of the text may overwhelm meaningful topical patterns.more » « less
-
Human-generated Spatial-Temporal Data (HSTD), represented as trajectory sequences, has undergone a data revolution, thanks to advances in mobile sensing, data mining, and AI. Previous studies have revealed the effectiveness of employing attention mechanisms to analyze massive HSTD. However, traditional attention models face challenges when managing lengthy and noisy trajectories as their computation comes with large memory overheads. Furthermore, attention scores within HSTD trajectories are sparse (i.e., most of the scores are zeros), and clustered with varying lengths (i.e., consecutive tokens clustered with similar scores). To address these challenges, we introduce an innovative strategy named Memory-efficient Trajectory Attention (MeTA). We leverage complicated spatial-temporal features (e.g., traffic speed, proximity to PoIs) and design an innovative feature-based trajectory partition technique to shrink trajectory length. Additionally, we present a learnable dynamic sorting mechanism, with which attention is only computed between sub-trajectories that have prominent correlations. Empirical validations using real-world HSTD demonstrate that our approach not only yields competitive results but also significantly lowers memory usage compared with state-of-the-art methods. Our approach presents innovative solutions for memory-efficient trajectory attention, offering valuable insights for handling HSTD efficiently.more » « less
An official website of the United States government

