The Bollobás set pairs inequality is a fundamental result in extremal set theory with many applications. In this paper, for $$n \geqslant k \geqslant t \geqslant 2$$, we consider a collection of $$k$$ families $$\mathcal{A}_i: 1 \leq i \leqslant k$$ where $$\mathcal{A}_i = \{ A_{i,j} \subset [n] : j \in [n] \}$$ so that $$A_{1, i_1} \cap \cdots \cap A_{k,i_k} \neq \varnothing$$ if and only if there are at least $$t$$ distinct indices $$i_1,i_2,\dots,i_k$$. Via a natural connection to a hypergraph covering problem, we give bounds on the maximum size $$\beta_{k,t}(n)$$ of the families with ground set $[n]$.
more »
« less
Purity in chromatically localized algebraic 𝐾-theory
We prove a purity property in telescopically localized algebraic K-theory of ring spectra: For n ≥ 1, the T (n)-localization of K(R) only depends on the T (0) ⊕ · · · ⊕ T(n)-localization of R. This complements a classical result of Waldhausen in rational K- theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that LT (n)K(R) in fact only depends on the T (n − 1) ⊕ T (n)-localization of R, again for n ≥ 1. As consequences, we deduce several vanishing results for telescopically localized K-theory, as well as an equivalence between K(R) and TC(τ≥0R) after T (n)-localization for n ≥ 2.
more »
« less
- Award ID(s):
- 2152311
- PAR ID:
- 10535398
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Journal of the American Mathematical Society
- ISSN:
- 0894-0347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For a subring $$R$$ of the rational numbers, we study $$R$$ -localization functors in the local homotopy theory of simplicial presheaves on a small site and then in $${\mathbb {A}}^1$$ -homotopy theory. To this end, we introduce and analyze two notions of nilpotence for spaces in $${\mathbb {A}}^1$$ -homotopy theory, paying attention to future applications for vector bundles. We show that $$R$$ -localization behaves in a controlled fashion for the nilpotent spaces we consider. We show that the classifying space $$BGL_n$$ is $${\mathbb {A}}^1$$ -nilpotent when $$n$$ is odd, and analyze the (more complicated) situation where $$n$$ is even as well. We establish analogs of various classical results about rationalization in the context of $${\mathbb {A}}^1$$ -homotopy theory: if $-1$ is a sum of squares in the base field, $${\mathbb {A}}^n \,{\setminus}\, 0$$ is rationally equivalent to a suitable motivic Eilenberg–Mac Lane space, and the special linear group decomposes as a product of motivic spheres.more » « less
-
One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $$n$$-vertex graph with more than $$\frac{k-1}{2}n$$ edges contains any $$k$$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $$r$$-uniform hypergraph, i.e., a hypergraph where each edge contains $$r$$ vertices. A tight tree is an $$r$$-uniform hypergraph such that there is an ordering $$v_1,\ldots,v_n$$ of its its vertices with the following property: the vertices $$v_1,\ldots,v_r$$ form an edge and for every $i>r$, there is a single edge $$e$$ containing the vertex $$v_i$$ and $r-1$ of the vertices $$v_1,\ldots,v_{i-1}$$, and $$e\setminus\{v_i\}$$ is a subset of one of the edges consisting only of vertices from $$v_1,\ldots,v_{i-1}$$. The conjecture of Kalai asserts that every $$n$$-vertex $$r$$-uniform hypergraph with more than $$\frac{k-1}{r}\binom{n}{r-1}$$ edges contains every $$k$$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $$n$$ for every $$r$$ and $$k$$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $$r$$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $$r$$ and $$k$$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices.more » « less
-
Let P be a set n points in a d-dimensional space. Tverberg theorem says that, if n is at least (k − 1)(d + 1), then P can be par- titioned into k sets whose convex hulls intersect. Partitions with this property are called Tverberg partitions. A partition has tolerance t if the partition remains a Tverberg partition after removal of any set of t points from P. A tolerant Tverberg partition exists in any dimensions provided that n is sufficiently large. Let N(d,k,t) be the smallest value of n such that tolerant Tverberg partitions exist for any set of n points in R d . Only few exact values of N(d,k,t) are known. In this paper, we study the problem of finding Radon partitions (Tver- berg partitions for k = 2) for a given set of points. We develop several algorithms and found new lower bounds for N(d,2,t).more » « less
-
Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} .more » « less
An official website of the United States government

