skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal designs for generalized linear mixed models based on the penalized quasi-likelihood method
While generalized linear mixed models are useful, optimal design questions for such models are challenging due to complexity of the information matrices. For longitudinal data, after comparing three approximations for the information matrices, we propose an approximation based on the penalized quasi-likelihood method.We evaluate this approximation for logistic mixed models with time as the single predictor variable. Assuming that the experimenter controls at which time observations are to be made, the approximation is used to identify locally optimal designs based on the commonly used A- and D-optimality criteria. The method can also be used for models with random block effects. Locally optimal designs found by a Particle Swarm Optimization algorithm are presented and discussed. As an illustration, optimal designs are derived for a study on self-reported disability in olderwomen. Finally,we also study the robustness of the locally optimal designs to mis-specification of the covariance matrix for the random effects.  more » « less
Award ID(s):
2304767 1935729
PAR ID:
10535417
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Statistics and Computing
Volume:
33
Issue:
5
ISSN:
0960-3174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crossover designs play an increasingly important role in precision medicine. We show the search of an optimal crossover design can be formulated as a convex optimization problem and convex optimization tools, such as CVX, can be directly used to search for an optimal crossover design.  We first demonstrate how to transform crossover design problems into convex optimization problems and show CVX can effortlessly find optimal crossover designs that coincide with a few theoretical crossover optimal designs in the literature. The proposed approach is especially useful when it becomes problematic to construct optimal designs analytically for complicated models. We then apply CVX to find crossover designs for models with auto-correlated error structures or when the information matrices may be singular and analytical answers are unavailable. We also construct N-of-1 trials frequently used in precision medicine to estimate treatment effects on the individuals or to estimate average treatment effects, including finding dual-objective optimal crossover designs. 
    more » « less
  2. We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball. Existing algorithms for this problem either incur sub-optimal error or have high communication and/or run-time complexity. We propose a new algorithmic framework, ProjUnit, for private mean estimation that yields algorithms that are computationally efficient, have low communication complexity, and incur optimal error up to a 1+o(1)-factor. Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm such as PrivUnitG in the lower-dimensional space. In addition, we show that, by appropriately correlating the random projection matrices across devices, we can achieve fast server run-time. We mathematically analyze the error of the algorithm in terms of properties of the random projections, and study two instantiations. Lastly, our experiments for private mean estimation and private federated learning demonstrate that our algorithms empirically obtain nearly the same utility as optimal ones while having significantly lower communication and computational cost. 
    more » « less
  3. null (Ed.)
    We provide a non-asymptotic analysis of the spiked Wishart and Wigner matrix models with a generative neural network prior. Spiked random matrices have the form of a rank-one signal plus noise and have been used as models for high dimensional Principal Component Analysis (PCA), community detection and synchronization over groups. Depending on the prior imposed on the spike, these models can display a statistical-computational gap between the information theoretically optimal reconstruction error that can be achieved with unbounded computational resources and the sub-optimal performances of currently known polynomial time algorithms. These gaps are believed to be fundamental, as in the emblematic case of Sparse PCA. In stark contrast to such cases, we show that there is no statistical-computational gap under a generative network prior, in which the spike lies on the range of a generative neural network. Specifically, we analyze a gradient descent method for minimizing a nonlinear least squares objective over the range of an expansive-Gaussian neural network and show that it can recover in polynomial time an estimate of the underlying spike with a rate-optimal sample complexity and dependence on the noise level. 
    more » « less
  4. We present a probabilistic model counter that can trade off running time with approximation accuracy. As in several previous works, the number of models of a formula is estimated by adding random parity constraints (equations). One key difference with prior works is that the systems of parity equations used correspond to the parity check matrices of Low Density Parity Check (LDPC) error-correcting codes. As a result, the equations tend to be much shorter, often containing fewer than 10 variables each, making the search for models that also satisfy the parity constraints far more tractable. The price paid for computational tractability is that the statistical properties of the basic estimator are not as good as when longer constraints are used. We show how one can deal with this issue and derive rigorous approximation guarantees by performing more solver invocations. 
    more » « less
  5. We extend earlier work on the design of convolutional code-specific CRC codes to Q -ary alphabets, with an eye toward Q -ary orthogonal signaling. Starting with distance-spectrum optimal, zero-terminated, Q -ary convolutional codes, we design Q -ary CRC codes so that the CRC/convolutional concatenation is distance-spectrum optimal. The Q -ary code symbols are mapped to a Q -ary orthogonal signal set and sent over an AWGN channel with noncoherent reception. We focus on Q=4 , rate-1/2 convolutional codes in our designs. The random coding union bound and normal approximation are used in earlier works as benchmarks for performance for distance-spectrum-optimal convolutional codes. We derive a saddlepoint approximation of the random coding union bound for the coded noncoherent signaling channel, as well as a normal approximation for this channel, and compare the performance of our codes to these limits. Our best design is within 0.6 dB of the RCU bound at a frame error rate of 10 −4 . 
    more » « less