skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lost in the curve: Investigating the disappearing knots in blazar 3C 454.3
One of the most well-known extragalactic sources in the sky, quasar3C 454.3, shows a curved parsec-scale jet that has been exhaustively monitored with very-long-baseline interferometry (VLBI) over the recent years. In this work, we present a comprehensive analysis of four years of high-frequency VLBI observations at 43 GHz and 86 GHz, between 2013–2017, in total intensity and linear polarization. The images obtained from these observations enabled us to study the jet structure and the magnetic field topology of the source on spatial scales down to 4.6 parsec in projected distance. The kinematic analysis reveals the abrupt vanishing of at least four new superluminal jet features in a characteristic jet region (i.e., region C), which is located at an approximate distance of 0.6 milliarcsec from the VLBI core. Our results support a model in which the jet bends, directing the relativistic plasma flow almost perfectly toward our line of sight, co-spatially with the region where components appear to stop.  more » « less
Award ID(s):
2310002 2011420
PAR ID:
10535446
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
682
ISSN:
0004-6361
Page Range / eLocation ID:
A154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The 2017 observing campaign of the Event Horizon Telescope (EHT) delivered the first very long baseline interferometry (VLBI) images at the observing frequency of 230 GHz, leading to a number of unique studies on black holes and relativistic jets from active galactic nuclei (AGN). In total, eighteen sources were observed, including the main science targets, Sgr A* and M 87, and various calibrators. Sixteen sources were AGN. Aims.We investigated the morphology of the sixteen AGN in the EHT 2017 data set, focusing on the properties of the VLBI cores: size, flux density, and brightness temperature. We studied their dependence on the observing frequency in order to compare it with the Blandford-Königl (BK) jet model. In particular, we aimed to study the signatures of jet acceleration and magnetic energy conversion. Methods.We modeled the source structure of seven AGN in the EHT 2017 data set using linearly polarized circular Gaussian components (1749+096, 1055+018, BL Lac, J0132–1654, J0006–0623, CTA 102, and 3C 454.3) and collected results for the other nine AGN from dedicated EHT publications, complemented by lower frequency data in the 2–86 GHz range. Combining these data into a multifrequency EHT+ data set, we studied the dependences of the VLBI core component flux density, size, and brightness temperature on the frequency measured in the AGN host frame (and hence on the distance from the central black hole), characterizing them with power law fits. We compared the observations with the BK jet model and estimated the magnetic field strength dependence on the distance from the central black hole. Results.Our observations spanning event horizon to parsec scales indicate a deviation from the standard BK model, particularly in the decrease of the brightness temperature with the observing frequency. Only some of the discrepancies may be alleviated by tweaking the model parameters or the jet collimation profile. Either bulk acceleration of the jet material, energy transfer from the magnetic field to the particles, or both are required to explain the observations. For our sample, we estimate a general radial dependence of the Doppler factorδ ∝ r≤0.5. This interpretation is consistent with a magnetically accelerated sub-parsec jet. We also estimate a steep decrease of the magnetic field strength with radiusB ∝ r−3, hinting at jet acceleration or efficient magnetic energy dissipation. 
    more » « less
  2. Context. In February 2017 the blazar OJ 287, one of the best super-massive binary-black-hole-system candidates, was detected for the first time at very high energies (VHEs; E  > 100 GeV) with the ground-based γ -ray observatory VERITAS. Aims. Very high energy γ rays are thought to be produced in the near vicinity of the central engine in active galactic nuclei. For this reason, and with the main goal of providing useful information for the characterization of the physical mechanisms connected with the observed teraelectronvolt flaring event, we investigate the parsec-scale source properties by means of high-resolution very long baseline interferometry observations. Methods. We use 86 GHz Global Millimeter-VLBI Array (GMVA) observations from 2015 to 2017 and combine them with additional multiwavelength radio observations at different frequencies from other monitoring programs. We investigate the source structure by modeling the brightness distribution with two-dimensional Gaussian components in the visibility plane. Results. In the GMVA epoch following the source VHE activity, we find a new jet feature (labeled K) at ∼0.2 mas from the core region and located in between two quasi-stationary components (labeled S1 and S2). Multiple periods of enhanced activity are detected at different radio frequencies before and during the VHE flaring state. Conclusions. Based on the findings of this work, we identify as a possible trigger for the VHE flaring emission during the early months of 2017 the passage of a new jet feature through a recollimation shock (represented by the model-fit component S1) in a region of the jet located at a de-projected distance of ∼10 pc from the radio core. 
    more » « less
  3. Abstract Event Horizon Telescope (EHT) images of the horizon-scale emission around the Galactic center supermassive black hole Sagittarius A* (Sgr A*) favor accretion flow models with a jet component. However, this jet has not been conclusively detected. Using the “best-bet” models of Sgr A* from the EHT Collaboration, we assess whether this nondetection is expected for current facilities and explore the prospects of detecting a jet with very-long-baseline interferometry (VLBI) at four frequencies: 86, 115, 230, and 345 GHz. We produce synthetic image reconstructions for current and next-generation VLBI arrays at these frequencies that include the effects of interstellar scattering, optical depth, and time variability. We find that no existing VLBI arrays are expected to detect the jet in these best-bet models, consistent with observations to date. We show that next-generation VLBI arrays at 86 and 115 GHz—in particular, the EHT after upgrades through the ngEHT program and the ngVLA—successfully capture the jet in our tests due to improvements in instrument sensitivity and (u,v) coverage at spatial scales critical to jet detection. These results highlight the potential of enhanced VLBI capabilities in the coming decade to reveal the crucial properties of Sgr A* and its interaction with the Galactic center environment. 
    more » « less
  4. Context.3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz. Aims.Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84. Methods.We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u, v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure. Results.We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency ofνm = (113 ± 4) GHz, a corresponding synchrotron self-absorbed magnetic field ofBSSA = (2.9 ± 1.6) G, and an equipartition magnetic field ofBeq = (5.2 ± 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (mnet = (17.0 ± 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017–2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84. Conclusions.The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84. 
    more » « less
  5. Context.BlazarAO 0235+164, located at a redshift ofz = 0.94, has undergone several sharp multi-spectral-range flaring episodes over recent decades. In particular, the episodes that peaked in 2008 and 2015, which were subject to extensive multi-wavelength coverage, exhibited an interesting behavior. Aims.We study the actual origin of these two observed flares by constraining the properties of the observed photo-polarimetric variability as well as of the broadband spectral energy distribution and the observed time-evolution behavior of the source. We use ultra-high-resolution total-flux and polarimetric very-long-baseline interferometry (VLBI) imaging. Methods.The analysis of VLBI images allowed us to constrain kinematic and geometrical parameters of the 7 mm jet. We used the discrete correlation function to compute the statistical correlation and the delays between emission at different spectral ranges. The multi-epoch modeling of the spectral energy distributions allowed us to propose specific models of the emission; in particular, with the aim to model the unusual spectral features observed in this source in the X-ray region of the spectrum during strong multi spectral-range flares. Results.We find that these X-ray spectral features can be explained by an emission component originating in a separate particle distribution than the one responsible for the two standard blazar bumps. This is in agreement with the results of our correlation analysis, where we did not find a strong correlation between the X-ray and the remaining spectral ranges. We find that both external Compton-dominated and synchrotron self-Compton-dominated models are able to explain the observed spectral energy distributions. However, the synchrotron self-Compton models are strongly favored by the delays and geometrical parameters inferred from the observations. 
    more » « less