skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intermittency and Dissipative Structures Arising from Relativistic Magnetized Turbulence
Abstract Kinetic simulations of relativistic turbulence have significantly advanced our understanding of turbulent particle acceleration. Recent progress has highlighted the need for an updated acceleration theory that can account for particle acceleration within the plasma’s coherent structures. Here, we investigate how intermittency modeling connects statistical fluctuations in turbulence to regions of high-energy dissipation. This connection is established by employing a generalized She–Leveque model to characterize the exponentsζpfor the structure functions S p l ζ p . The fitting of the scaling exponents provides us with a measure of the codimension of the dissipative structures, for which we subsequently determine the filling fraction. We perform our analysis for a range of magnetizationsσand relative fluctuation amplitudesδB0/B0. We find that increasing values ofσandδB0/B0allow the turbulent cascade to break sheetlike structures into smaller regions of dissipation that resemble chains of flux ropes. However, as their dissipation measure increases, the dissipative regions become less volume filling. With this work, we aim to inform future turbulent acceleration theories that incorporate particle energization from interactions with coherent structures within relativistic turbulence.  more » « less
Award ID(s):
2308090 2107806 2107802
PAR ID:
10535916
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultra-high-energy cosmic rays (UHECRs), particles characterized by energies exceeding 1018eV, are generally believed to be accelerated electromagnetically in high-energy astrophysical sources. One promising mechanism of UHECR acceleration is magnetized turbulence. We demonstrate from first principles, using fully kinetic particle-in-cell simulations, that magnetically dominated turbulence accelerates particles on a short timescale, producing a power-law energy distribution with a rigidity-dependent, sharply defined cutoff well approximated by the form f cut E , E cut = sech ( E / E cut ) 2 . Particle escape from the turbulent accelerating region is energy dependent, withtesc∝E−δandδ∼ 1/3. The resulting particle flux from the accelerator follows dN / dEdt E s sech ( E / E cut ) 2 , withs∼ 2.1. We fit the Pierre Auger Observatory’s spectrum and composition measurements, taking into account particle interactions between acceleration and detection, and show that the turbulence-associated energy cutoff is well supported by the data, with the best-fitting spectral index being s = 2.1 0.13 + 0.06 . Our first-principles results indicate that particle acceleration by magnetically dominated turbulence may constitute the physical mechanism responsible for UHECR acceleration. 
    more » « less
  2. Abstract In the context of incompressible fluids, the observation that turbulent singular structures fail to be space filling is known as “intermittency”, and it has strong experimental foundations. Consequently, as first pointed out by Landau, real turbulent flows do not satisfy the central assumptions of homogeneity and self-similarity in the K41 theory, and the K41 prediction of structure function exponents$$\zeta _p={p}/{3}$$ ζ p = p / 3 might be inaccurate. In this work we prove that, in the inviscid case, energy dissipation that is lower-dimensional in an appropriate sense implies deviations from the K41 prediction in everyp-th order structure function for$$p>3$$ p > 3 . By exploiting a Lagrangian-type Minkowski dimension that is very reminiscent of the Taylor’sfrozen turbulencehypothesis, our strongest upper bound on$$\zeta _p$$ ζ p coincides with the$$\beta $$ β -model proposed by Frisch, Sulem and Nelkin in the late 70s, adding some rigorous analytical foundations to the model. More generally, we explore the relationship between dimensionality assumptions on the dissipation support and restrictions on thep-th order absolute structure functions. This approach differs from the current mathematical works on intermittency by its focus on geometrical rather than purely analytical assumptions. The proof is based on a new local variant of the celebrated Constantin-E-Titi argument that features the use of a third order commutator estimate, the special double regularity of the pressure, and mollification along the flow of a vector field. 
    more » « less
  3. Abstract Astrophysical relativistic outflows are launched as Poynting-flux dominated, yet the mechanism governing efficient magnetic dissipation, which powers the observed emission, is still poorly understood. We study magnetic energy dissipation in relativistic “striped” jets, which host current sheets separating magnetically dominated regions with opposite field polarity. The effective gravity forcegin the rest frame of accelerating jets drives the Kruskal–Schwarzschild instability (KSI), a magnetic analog of the Rayleigh–Taylor instability. By means of 2D and 3D particle-in-cell simulations, we study the linear and nonlinear evolution of the KSI. The linear stage is well described by linear stability analysis. The nonlinear stages of the KSI generate thin (skin-depth-thick) current layers, with length comparable to the dominant KSI wavelength. There, the relativistic drift-kink mode and the tearing mode drive efficient magnetic dissipation. The dissipation rate can be cast as an increase in the effective width Δeffof the dissipative region, which follows d Δ eff / d t 0.05 Δ eff g . Our results have important implications for the location of the dissipation region in gamma-ray burst and active galactic nuclei jets. 
    more » « less
  4. Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over Z Z / Z 0.1 - 3 , gas surface density Σgas∼ 5–150Mpc−2, and stellar surface density Σstar∼ 1–50Mpc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5Mkpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight W . For given Σgasand Σstar, we find Σ SFR Z 0.3 . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as ϒ th W 0.46 Z 0.53 , while the combined turbulent and magnetic feedback yield shows weaker dependence ϒ turb + mag W 0.22 Z 0.18 . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved. 
    more » « less
  5. Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrum f 0 ( , p ) with the Green’s function G ( r , p ; p ) , which describes the monoenergetic spectrum solution in which f 0 δ ( p p ) asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution for G ( r , p ; p ) . In this paper, we explore for the first time, solutions for more general and realistic forms for f 0 ( , p ) . The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering time τ ( r , p ) = τ 0 ( p / p 0 ) α in the shear flow region 0 <r<r2, and τ ( r , p ) = τ 0 ( p / p 0 ) α ( r / r 2 ) s , wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution ψ p ( r , p ; p ) that particles observed at (r,p) originated fromr→ ∞ with momentum p . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described. 
    more » « less