skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is Autism Different for Girls and Boys?
Autism is a common condition that affects the way people think and interact with the world. Most of our knowledge about autism is from research done with autistic boys. This means that we do not know much about the ways that autistic girls may be different than autistic boys. Now, researchers are including more autistic girls in their studies to find out about these differences. However, not all researchers find the same results: some researchers find that autistic boys are better at some tasks and other researchers find that autistic girls are better at those same tasks. In this article, we review some of the findings about differences between autistic girls and boys and talk about why it is important to understand these differences.  more » « less
Award ID(s):
2150830
PAR ID:
10535921
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers for Young Minds
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
12
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gender stereotypes are harmful for girls’ enrollment and performance in science and mathematics. So far, less is known about children’s and adolescents’ stereotypes regarding technology and engineering. In the current study, participants’ (N = 1,206, girlsn = 623; 5–17-years-old,M = 8.63,SD = 2.81) gender stereotypes for each of the STEM (science, technology, engineering, and mathematics) domains were assessed along with the relation between these stereotypes and a peer selection task in a STEM context. Participants reported beliefs that boys are usually more skilled than are girls in the domains of engineering and technology; however, participants did not report gender differences in ability/performance in science and mathematics. Responses to the stereotype measures in favor of one’s in-group were greater for younger participants than older participants for both boys and girls. Perceptions that boys are usually better than girls at science were related to a greater likelihood of selecting a boy for help with a science question. These findings document the importance of domain specificity, even within STEM, in attempts to measure and challenge gender stereotypes in childhood and adolescence. 
    more » « less
  2. Abstract The current study explores differences in messages that preschool teachers send girls and boys about science, technology, engineering, and math (STEM). Video footage of a preschool classroom (16 hr;N = 6 teachers; 20 children) was transcribed. Teachers' questions were coded for question‐type and whether the question was directed to a boy or a girl. Teachers directed significantly more scientific questions to boys than to girls. However, boys spent more time than girls in the science areas of the classroom and teachers directed questions to boys and girls at similar rates. These findings highlight how as early as the preschool years, girls and boys may receive different messages about how to approach science. 
    more » « less
  3. Autistic and neurotypical children do not handle audiovisual speech in the same manner. Current evidence suggests that this difference occurs at the level of cue combination. Here, we test whether differences in autistic and neurotypical audiovisual speech perception can be explained by a neural theory of sensory perception in autism, which proposes that heightened levels of neural excitation can account for sensory differences in autism. Through a linking hypothesis that integrates a standard probabilistic cognitive model of cue integration with representations of neural activity, we derive a model that can simulate audio-visual speech perception at a neural population level. Simulations of an audiovisual lexical identification task demonstrate that heightened levels of neural excitation at the level of cue combination cannot account for the observed differences in autistic and neurotypical children's audiovisual speech perception. 
    more » « less
  4. Though adults tend to endorse the stereotype that boys are better than girls in math, children tend to favor their own gender or be gender egalitarian. When do individuals start endorsing the traditional stereotype that boys are better? Using two longitudinal U.S. datasets that span 1993 to 2011, we examined three questions: (1) What are the developmental changes in adolescents’ gender stereotypes about math abilities from early to late adolescence? (2) Do the developmental changes vary based on gender and race/ethnicity? (3) Are adolescents’ stereotypes related to their math motivational beliefs? Finally, (4) do these patterns replicate across two datasets that vary in historical time? Adolescents in grades 8/9 and 11 were asked whether girls or boys are better at math (n’s = 1186 and 23,340, 49–53% girls, 30–54% White, 13–60% Black, 1–22% Latinx, and 2% to 4% Asian). Early adolescents were more likely to be gender egalitarian or favor their own gender. By late adolescence, adolescents’ stereotypes typically shifted towards the traditional stereotype that boys are better. In terms of race/ethnicity, White and Asian adolescents significantly favored boys, whereas Black and Latinx adolescents were more likely to endorse gender egalitarian beliefs. Adolescents’ stereotypes were significantly related to their expectancy beliefs, negatively for girls and positively for boys. 
    more » « less
  5. Recent reforms in science education have supported the inclusion of engineering in K- 12 curricula. To this end, many science classrooms have incorporated engineering units that include design tasks. Design is an integral part of engineering and helps students think in creative and interdisciplinary ways. In this study, we examined middle-school students’ naturally occurring design conversations in small design teams and their learning of science as a result of engaging in an engineering and science unit. We found that the proportion of different thought processes used by boys and girls was quite similar. Both girls and boys produced a higher percentage of ideas or thoughts associated with divergent thinking, but a lower proportion in convergent thinking, evaluative thinking, and cognitive memory. In addition, gender composition of design teams influenced thought processes expressed by girls and boys. Interestingly, in mixed teams, both girls and boys expressed less divergent thinking than those in single-sex teams. With regard to science content learning, both girls and boys showed statistically significant learning gains. There were no significant gender differences in the pre- and post-test scores. These results suggest that participating in an engineering design task in small design teams provided students opportunities to engage in productive thinking and enhance their learning of the targeted science concept—ecosystems. 
    more » « less