skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Thermal Stress on Heterogeneous IoT-Based Federated Learning
Federated learning is a novel paradigm allowing the training of a global machine-learning model on distributed devices. It shares model parameters instead of private raw data during the entire model training process. While federated learning enables machine learning processes to take place collaboratively on Internet of Things (IoT) devices, compared to data centers, IoT devices with limited resource budgets typically have less security protection and are more vulnerable to potential thermal stress. Current research on the evaluation of federated learning is mainly based on the simulation of multi-clients/processes on a single machine/device. However, there is a gap in understanding the performance of federated learning under thermal stress in real-world distributed low-power heterogeneous IoT devices. Our previous work was among the first to evaluate the performance of federated learning under thermal stress on real-world IoT-based distributed systems. In this paper, we extended our work to a larger scale of heterogeneous real-world IoT-based distributed systems to further evaluate the performance of federated learning under thermal stress. To the best of our knowledge, the presented work is among the first to evaluate the performance of federated learning under thermal stress on real-world heterogeneous IoT-based systems. We conducted comprehensive experiments using the MNIST dataset and various performance metrics, including training time, CPU and GPU utilization rate, temperature, and power consumption. We varied the proportion of clients under thermal stress in each group of experiments and systematically quantified the effectiveness and real-world impact of thermal stress on the low-end heterogeneous IoT-based federated learning system. We added 67% more training epochs and 50% more clients compared with our previous work. The experimental results demonstrate that thermal stress is still effective on IoT-based federated learning systems as the entire global model and device performance degrade when even a small ratio of IoT devices are being impacted. Experimental results have also shown that the more influenced client under thermal stress within the federated learning system (FLS) tends to have a more major impact on the performance of FLS under thermal stress.  more » « less
Award ID(s):
2300955
PAR ID:
10535922
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Electronics
Date Published:
Journal Name:
Electronics
Volume:
13
Issue:
16
ISSN:
2079-9292
Page Range / eLocation ID:
3140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated Learning (FL) enables edge devices or clients to collaboratively train machine learning (ML) models without sharing their private data. Much of the existing work in FL focuses on efficiently learning a model for a single task. In this paper, we study simultaneous training of multiple FL models using a common set of clients. The few existing simultaneous training methods employ synchronous aggregation of client updates, which can cause significant delays because large models and/or slow clients can bottleneck the aggregation. On the other hand, a naive asynchronous aggregation is adversely affected by stale client updates. We propose FedAST, a buffered asynchronous federated simultaneous training algorithm that overcomes bottlenecks from slow models and adaptively allocates client resources across heterogeneous tasks. We provide theoretical convergence guarantees of FedAST for smooth non-convex objective functions. Extensive experiments over multiple real-world datasets demonstrate that our proposed method outperforms existing simultaneous FL approaches, achieving up to 46.0% reduction in time to train multiple tasks to completion. 
    more » « less
  2. The study of generative models is a promising branch of deep learning techniques, which has been successfully applied to different scenarios, such as Artificial Intelligence and the Internet of Things. While in most of the existing works, the generative models are realized as a centralized structure, raising the threats of security and privacy and the overburden of communication costs. Rare efforts have been committed to investigating distributed generative models, especially when the training data comes from multiple heterogeneous sources under realistic IoT settings. In this paper, to handle this challenging problem, we design a federated generative model framework that can learn a powerful generator for the hierarchical IoT systems. Particularly, our generative model framework can solve the problem of distributed data generation on multi-source heterogeneous data in two scenarios, i.e., feature related scenario and label related scenario. In addition, in our federated generative models, we develop a synchronous and an asynchronous updating methods to satisfy different application requirements. Extensive experiments on a simulated dataset and multiple real datasets are conducted to evaluate the data generation performance of our proposed generative models through comparison with the state-of-the-arts. 
    more » « less
  3. Federated learning is a promising paradigm that allows multiple clients to collaboratively train a model without sharing the local data. However, the presence of heterogeneous devices in federated learning, such as mobile phones and IoT devices with varying memory capabilities, would limit the scale and hence the performance of the model could be trained. The mainstream approaches to address memory limitations focus on width-slimming techniques, where different clients train subnetworks with reduced widths locally and then the server aggregates the subnetworks. The global model produced from these methods suffers from performance degradation due to the negative impact of the actions taken to handle the varying subnetwork widths in the aggregation phase. In this paper, we introduce a memory-adaptive depth-wise learning solution in FL called FEDEPTH, which adaptively decomposes the full model into blocks according to the memory budgets of each client and trains blocks sequentially to obtain a full inference model. Our method outperforms state-of-the-art approaches, achieving 5% and more than 10% improvements in top-1 accuracy on CIFAR-10 and CIFAR-100, respectively. We also demonstrate the effectiveness of depth-wise fine-tuning on ViT. Our findings highlight the importance of memory-aware techniques for federated learning with heterogeneous devices and the success of depth-wise training strategy in improving the global model’s performance. 
    more » « less
  4. Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs), for multiple clients, each with its own graph data. Existing methods usually assume that each client has both node features and graph structure of its graph data. In real-world scenarios, however, there exist federated systems where only a part of the clients have such data while other clients (i.e. graphless clients) may only have node features. This naturally leads to a novel problem in FGL: how to jointly train a model over distributed graph data with graphless clients? In this paper, we propose a novel framework FedGLS to tackle the problem in FGL with graphless clients. In FedGLS, we devise a local graph learner on each graphless client which learns the local graph structure with the structure knowledge transferred from other clients. To enable structure knowledge transfer, we design a GNN model and a feature encoder on each client. During local training, the feature encoder retains the local graph structure knowledge together with the GNN model via knowledge distillation, and the structure knowledge is transferred among clients in global update. 
    more » « less
  5. Federated learning is an emerging machine learning framework where models are trained using heterogeneous datasets collected by a large number of edge clients. Standard methods to aggregate local training models weigh each model by a fraction of data size at that client. However, such approaches result in unfairness to clients with small and unique datasets, leading to inferior accuracy of the global model at these clients. In this work, we propose a novel optimization framework called DRFL that dynamically adjusts the weight assigned to each client, and we combine it with a biased client selection strategy, both of which encourage fairness in federated training. We validate the effectiveness of our proposed method on a suite of both synthetic and real federated datasets, revealing the proposed method outperforms existing baselines in terms of resulting fairness. 
    more » « less