In contrast to fairly good knowledge of dissolved carbon and major elements in great Arctic rivers, seasonally resolved concentrations of many trace elements remain poorly characterized, hindering assessment of the current status and possible future changes in the hydrochemistry of the Eurasian Arctic. To fill this gap, here we present results for a broad suite of trace elements in the largest rivers of the Russian Arctic (Ob, Yenisey, Lena, and Kolyma). For context, we also present results for major elements that are more routinely measured in these rivers. Water samples for this study were collected during an international campaign called PARTNERS from 2004 through 2006. A comparison of element concentrations obtained for Arctic rivers in this study with average concentrations in the world’s rivers shows that most elements in the Arctic rivers are similar to or significantly lower than the world average. The mineral content of the three greatest rivers (Ob, Yenisey, and Lena) varies within a narrow range (from 107 mg/L for Yenisey to 123 mg/L for Ob). The Kolyma’s mineral content is significantly lower (52.4 mg/L). Fluxes of all major and trace elements were calculated using average concentrations and average water discharge for the 2004–2006 period. Based on these flux estimates, specific export (i.e., t/km2/y) for most of the elements was greatest for the Lena, followed by the Yenisey, Ob, and Kolyma in decreasing order. Element pairwise correlation analysis identified several distinct groups of elements depending on their sources and relative mobility in the river water. There was a negative correlation between Fe and DOC concentration in the Ob River, which could be linked to different sources of these components in this river. The annual yields of major and trace elements calculated for each river were generally consistent with values assessed for other mid-size and small rivers of the Eurasian subarctic.
more » « less- PAR ID:
- 10535936
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Water
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 316
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. Across the Arctic, vast areas of permafrost are being degraded by climatechange, which has the potential to release substantial quantities ofnutrients, including nitrogen into large Arctic rivers. These rivers heavilyinfluence the biogeochemistry of the Arctic Ocean, so it is important tounderstand the potential changes to rivers from permafrost degradation. Thisstudy utilized dissolved nitrogen species (nitrate and dissolved organicnitrogen (DON)) along with nitrogen isotope values (δ15N-NO3- and δ15N-DON) of samples collectedfrom permafrost sites in the Kolyma River and the six largest Arctic rivers.Large inputs of DON and nitrate with a unique isotopically heavy δ15N signature were documented in the Kolyma, suggesting the occurrenceof denitrification and highly invigorated nitrogen cycling in the Yedomapermafrost thaw zones along the Kolyma. We show evidence for permafrost-derived DON being recycled to nitrate as it passes through the river,transferring the high 15N signature to nitrate. However, the potentialto observe these thaw signals at the mouths of rivers depends on the spatialscale of thaw sites, permafrost degradation, and recycling mechanisms. Incontrast with the Kolyma, with near 100 % continuous permafrost extent,the Ob River, draining large areas of discontinuous and sporadicpermafrost, shows large seasonal changes in both nitrate and DON isotopicsignatures. During winter months, water percolating through peat soilsrecords isotopically heavy denitrification signals in contrast with thelighter summer values when surface flow dominates. This early yeardenitrification signal was present to a degree in the Kolyma, but the abilityto relate seasonal nitrogen signals across Arctic Rivers to permafrostdegradation could not be shown with this study. Other large rivers in theArctic show different seasonal nitrogen trends. Based on nitrogen isotopevalues, the vast majority of nitrogen fluxes in the Arctic rivers is fromfresh DON sourced from surface runoff through organic-rich topsoil and notfrom permafrost degradation. However, with future permafrost thaw, otherArctic rivers may begin to show nitrogen trends similar to the Ob. Ourstudy demonstrates that nitrogen inputs from permafrost thaw can beidentified through nitrogen isotopes, but only on small spatial scales.Overall, nitrogen isotopes show potential for revealing integrated catchmentwide nitrogen cycling processes.more » « less
-
Abstract Ongoing rapid arctic warming leads to extensive permafrost thaw, which in turn increases the hydrologic connectivity of the landscape by opening up subsurface flow paths. Suspended particulate organic matter (POM) has proven useful to trace permafrost thaw signals in arctic rivers, which may experience higher organic matter loads in the future due to expansion and increasing intensity of thaw processes such as thermokarst and river bank erosion. Here we focus on the Kolyma River watershed in Northeast Siberia, the world's largest watershed entirely underlain by continuous permafrost. To evaluate and characterize the present‐day fluvial release of POM from permafrost thaw, we collected water samples every 4–7 days during the 4‐month open water season in 2013 and 2015 from the lower Kolyma River mainstem and from a small nearby headwater stream (Y3) draining an area completely underlain by Yedoma permafrost (Pleistocene ice‐ and organic‐rich deposits). Concentrations of particulate organic carbon generally followed the hydrograph with the highest concentrations during the spring flood in late May/early June. For the Kolyma River, concentrations of dissolved organic carbon showed a similar behavior, in contrast to the headwater stream, where dissolved organic carbon values were generally higher and particulate organic carbon concentrations lower than for Kolyma. Carbon isotope analysis (δ13C, Δ14C) suggested Kolyma‐POM to stem from both contemporary and older permafrost sources, while Y3‐POM was more strongly influenced by in‐stream production and recent vegetation. Lipid biomarker concentrations (high‐molecular‐weight
n ‐alkanoic acids andn ‐alkanes) did not display clear seasonal patterns, yet implied Y3‐POM to be more degraded than Kolyma‐POM. -
Climate warming is expected to mobilize northern permafrost and peat organic carbon (PP-C), yet magnitudes and system specifics of even current releases are poorly constrained. While part of the PP-C will degrade at point of thaw to CO 2 and CH 4 to directly amplify global warming, another part will enter the fluvial network, potentially providing a window to observe large-scale PP-C remobilization patterns. Here, we employ a decade-long, high-temporal resolution record of 14 C in dissolved and particulate organic carbon (DOC and POC, respectively) to deconvolute PP-C release in the large drainage basins of rivers across Siberia: Ob, Yenisey, Lena, and Kolyma. The 14 C-constrained estimate of export specifically from PP-C corresponds to only 17 ± 8% of total fluvial organic carbon and serves as a benchmark for monitoring changes to fluvial PP-C remobilization in a warming Arctic. Whereas DOC was dominated by recent organic carbon and poorly traced PP-C (12 ± 8%), POC carried a much stronger signature of PP-C (63 ± 10%) and represents the best window to detect spatial and temporal dynamics of PP-C release. Distinct seasonal patterns suggest that while DOC primarily stems from gradual leaching of surface soils, POC reflects abrupt collapse of deeper deposits. Higher dissolved PP-C export by Ob and Yenisey aligns with discontinuous permafrost that facilitates leaching, whereas higher particulate PP-C export by Lena and Kolyma likely echoes the thermokarst-induced collapse of Pleistocene deposits. Quantitative 14 C-based fingerprinting of fluvial organic carbon thus provides an opportunity to elucidate large-scale dynamics of PP-C remobilization in response to Arctic warming.more » « less
-
This study examines dissolved rhenium (Re) concentrations as a function of water runoff using river samples from two contrasting mountainous watersheds, the Eel and Umpqua Rivers in the Pacific Northwest, USA. These watersheds share many key characteristics in terms of size, discharge, climate, and vegetation, but they have a 15-fold difference in sediment yield due to differences in their tectonic setting and uplift and erosion rates. We evaluate concentration-runoff (C-R) relationships and ratios of coefficients of variation (CVC/CVR) for major cations, anions, dissolved inorganic carbon, selected trace elements including Re, and 87Sr/86Sr ratios. Recent research outlines the potential of Re to serve as a tracer for the oxidation of ancient/fossil organic matter because of its close association with petrogenic carbon (OCpetro) in rocks. In both the Eel and Umpqua Rivers, our measurements show that Re behaves similarly to major weathering derived-solutes corrected for atmospheric input, such as Ca2+*, Mg2+*, and Na+* with modest dilution across all tributaries with increasing runoff. Rhenium behaves dissimilarly from other trace elements, such as Mo and U, and is also dissimilar to biologically-cycled nutrients, such as NO3 – , PO4 3 , and K+*, suggesting differences in sources, solute generation mechanisms, and flowpaths. Rhenium behavior is also distinct from that of colloids, which have increasing concentrations with increasing runoff. We find that Re and sulfate corrected for atmospheric input (SO4 2 *) have distinct CR relationships, in which SO4 2 * undergoes greater dilution with increasing runoff. This implies that Re is not dominantly sourced from sulfide weathering, which leaves primary bedrock minerals and OCpetro hosted in bedrock of these watersheds as the likely dominant sources of dissolved Re release. At mean discharge, Re concentration in the Eel river (3.5 pmol L-1) is more than two times greater than Re concentrations in the Umpqua River (1.5 pmol L-1). Furthermore, comparison of two tributary watersheds with similar bedrock but marked differences in erosion rates show higher Re concentrations in Bull Creek (erosion rate of 0.5 mm yr 1) relative to Elder Creek (erosion rate of 0.2 mm yr 1). The results of this study suggest that dissolved Re in the Eel and Umpqua River basins is likely derived from primary mineral dissolution or OCpetro oxidation, and Re fluxes are higher in areas with higher erosion rates, suggesting that tectonic setting is one factor that controls Re release and therefore OCpetro oxidation.more » « less
-
Abstract This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian Rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and tDOM fluorescence proxies as DOM is removed during freezing. High‐resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea‐ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long‐range transport of TE to the North Atlantic.