Arctic landscapes are warming and becoming wetter due to changes in precipitation and the timing of snowmelt which consequently alters seasonal runoff and river discharge patterns. These changes in hydrology lead to increased mobilization and transport of terrestrial dissolved organic matter (DOM) to Arctic coastal seas where significant impacts on biogeochemical cycling can occur. Here, we present measurements of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) in the Yukon River-to-Bering Sea system and two river plumes on the Alaska North Slope which flow into the Beaufort Sea. Our sampling characterized optical and biogeochemical properties of DOM during high and low river discharge periods for the Yukon River-Bering Sea system. The average DOC concentration at the multiple Yukon River mouths ranged from a high of 10.36 mg C L -1 during the ascending limb of the 2019 freshet (late May), 6.4 mg C L -1 during the descending limb of the 2019 freshet (late June), and a low of 3.86 mg C L -1 during low river discharge in August 2018. CDOM absorption coefficient at 412 nm ( a CDOM (412)) averaged 8.23 m -1 , 5.07 m -1 , and 1.9 m -1 , respectively. Several approaches to model DOC concentration based on its relationship with CDOM properties demonstrated cross-system seasonal and spatial robustness for these Arctic coastal systems despite spanning an order of magnitude decrease in DOC concentration from the lower Yukon River to the Northern Bering Sea as well as the North Slope systems. “Snapshot” fluxes of DOC and CDOM across the Yukon River Delta to Norton Sound were calculated from our measurements and modeled water fluxes forced with upstream USGS river gauge data. Our findings suggest that during high river flow, DOM reaches the delta largely unaltered by inputs or physical and biogeochemical processing and that the transformations of Yukon River DOM largely occur in the plume. However, during low summer discharge, multiple processes including local precipitation events, microbial decomposition, photochemistry, and likely others can alter the DOM properties within the lower Yukon River and Delta prior to flowing into Norton Sound.
more »
« less
The Distinct Composition and Transformation of Terrestrial Organic Carbon in the Yukon River Delta and Plume During the Mighty Spring Freshet
Abstract Arctic amplification is leading to increased terrestrial organic carbon (terrOC) mobilization with downstream impacts on riverine and marine biogeochemistry. To improve quantification and characterization of terrOC discharged to the Arctic Ocean, Yukon River delta samples were collected during three stages of the annual hydrograph (ascending limb/peak freshet, descending limb, late summer) and across a land‐to‐ocean salinity gradient (0.08–29.06 ppt). All samples were analyzed for dissolved organic carbon (DOC) concentration and lignin phenols to determine seasonal variability in riverine terrOC and salinity‐induced transformation of highly aromatic terrestrial compounds. Additionally, the relationship between lignin and absorbance at 350 and 412 nm was assessed to determine the feasibility of using optical proxies for accurate quantification, both seasonally and across expansive salinity gradients. Lignin phenols were highest during the ascending limb/peak freshet (0.58–0.97 mg/100 mg OC) when riverine DOC was dominated by young vascular plant sources, whereas lignin phenols were lower (0.15–0.89 mg/100 mg OC) and riverine DOC more variable in terrestrial source and diagenetic state during the descending limb and late summer. Across the sampled salinity gradient, there was disproportionate depletion of lignin (up to 73%) compared to DOC (up to 22%). Finally, while optical proxies can be used to quantify lignin within seasonal or spatial contexts, increased uncertainty is likely when expanding linear correlations across Arctic land‐ocean continuums. Overall, results indicate seasonal, spatial, interannual, and climatic controls that are amplified during high‐flow conditions and important to constrain when investigating Arctic terrOC cycling and land‐ocean DOC flux.
more »
« less
- PAR ID:
- 10535956
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 129
- Issue:
- 6
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Biogeochemical cycling in the semi-enclosed Arctic Ocean is stronglyinfluenced by land–ocean transport of carbon and other elements and isvulnerable to environmental and climate changes. Sediments of the ArcticOcean are an important part of biogeochemical cycling in the Arctic andprovide the opportunity to study present and historical input and the fate oforganic matter (e.g., through permafrost thawing). Comprehensive sedimentary records are required to compare differencesbetween the Arctic regions and to study Arctic biogeochemical budgets. Tothis end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) wasestablished to curate data primarily on concentrations of organic carbon(OC) and OC isotopes (δ13C, Δ14C) yet also ontotal N (TN) as well as terrigenous biomarkers and other sedimentgeochemical and physical properties. This new database builds on thepublished literature and earlier unpublished records through an extensiveinternational community collaboration. This paper describes the establishment, structure and current status ofCASCADE. The first public version includes OC concentrations in surfacesediments at 4244 oceanographic stations including 2317 with TNconcentrations, 1555 with δ13C-OC values and 268 with Δ14C-OC values and 653 records with quantified terrigenous biomarkers(high-molecular-weight n-alkanes, n-alkanoic acids and lignin phenols).CASCADE also includes data from 326 sediment cores, retrieved by shallowbox or multi-coring, deep gravity/piston coring, or sea-bottom drilling.The comprehensive dataset reveals large-scale features of both OC contentand OC sources between the shelf sea recipients. This offers insight intorelease of pre-aged terrigenous OC to the East Siberian Arctic shelf andyounger terrigenous OC to the Kara Sea. Circum-Arctic sediments therebyreveal patterns of terrestrial OC remobilization and provide clues about thawing of permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments andfacilitates a wide array of future empirical and modeling studies of theArctic carbon cycle. The database is openly and freely available online(https://doi.org/10.17043/cascade; Martens et al., 2021), is provided in variousmachine-readable data formats (data tables, GIS shapefile, GIS raster), andalso provides ways for contributing data for future CASCADE versions. Wewill continuously update CASCADE with newly published and contributed dataover the foreseeable future as part of the database management of the BolinCentre for Climate Research at Stockholm University.more » « less
-
Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source.more » « less
-
Abstract Climate change is dramatically altering Arctic ecosystems, leading to shifts in the sources, composition, and eventual fate of riverine dissolved organic matter (DOM) in the Arctic Ocean. Here we examine a 6‐year DOM compositional record from the six major Arctic rivers using Fourier‐transform ion cyclotron resonance mass spectrometry paired with dissolved organic carbon isotope data (Δ14C, δ13C) to investigate how seasonality and permafrost influence DOM, and how DOM export may change with warming. Across the pan‐Arctic, DOM molecular composition demonstrates synchrony and stability. Spring freshet brings recently leached terrestrial DOM with a latent high‐energy and potentially bioavailable subsidy, reconciling the historical paradox between freshet DOM's terrestrial bulk signatures and high biolability. Winter features undiluted baseflow DOM sourced from old, microbially degraded groundwater DOM. A stable core Arctic riverine fingerprint (CARF) is present in all samples and may contribute to the potential carbon sink of persistent, aged DOM in the global ocean. Future warming may lead to shifting sources of DOM and export through: (1) flattening Arctic hydrographs and earlier melt modifying the timing and role of the spring high‐energy subsidy; (2) increasing groundwater discharge resulting in a greater fraction of DOM export to the ocean occurring as stable and aged molecules; and (3) increasing contribution of nitrogen/sulfur‐containing DOM from microbial degradation caused by increased connectivity between groundwater and surface waters due to permafrost thaw. Our findings suggest the ubiquitous CARF (which may contribute to oceanic carbon sequestration) underlies predictable variations in riverine DOM composition caused by seasonality and permafrost extent.more » « less
-
Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon ( 14 C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14 C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14 C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.more » « less
An official website of the United States government

