skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Robustness of Cross-Concentrated Sampling for Matrix Completion
Matrix completion is one of the crucial tools in modern data science research. Recently, a novel sampling model for matrix completion coined cross-concentrated sampling (CCS) has caught much attention. However, the robustness of the CCS model against sparse outliers remains unclear in the existing studies. In this paper, we aim to answer this question by exploring a novel Robust CCS Completion problem. A highly efficient non-convex iterative algorithm, dubbed Robust CUR Completion (RCURC), is proposed. The empirical performance of the proposed algorithm, in terms of both efficiency and robustness, is verified in synthetic and real datasets.  more » « less
Award ID(s):
2304489
PAR ID:
10536047
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6929-8
Page Range / eLocation ID:
1-5
Format(s):
Medium: X
Location:
Princeton, NJ, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a novel robust reinforcement learning framework for discrete-time linear systems with model mismatch that may arise from the sim-to-real gap. A key strategy is to invoke advanced techniques from control theory. Using the formulation of the classical risk-sensitive linear quadratic Gaussian control, a dual-loop policy optimization algorithm is proposed to generate a robust optimal controller. The dual-loop policy optimization algorithm is shown to be globally and uniformly convergent, and robust against disturbances during the learning process. This robustness property is called small-disturbance input-to-state stability and guarantees that the proposed policy optimization algorithm converges to a small neighborhood of the optimal controller as long as the disturbance at each learning step is relatively small. In addition, when the system dynamics is unknown, a novel model-free off-policy policy optimization algorithm is proposed. Finally, numerical examples are provided to illustrate the proposed algorithm. 
    more » « less
  2. We propose a unified framework to solve general low-rank plus sparse matrix recovery problems based on matrix factorization, which covers a broad family of objective functions satisfying the restricted strong convexity and smoothness conditions. Based on projected gradient descent and the double thresholding operator, our proposed generic algorithm is guaranteed to converge to the unknown low-rank and sparse matrices at a locally linear rate, while matching the best-known robustness guarantee (i.e., tolerance for sparsity). At the core of our theory is a novel structural Lipschitz gradient condition for low-rank plus sparse matrices, which is essential for proving the linear convergence rate of our algorithm, and we believe is of independent interest to prove fast rates for general superposition-structured models. We illustrate the application of our framework through two concrete examples: robust matrix sensing and robust PCA. Empirical experiments corroborate our theory. 
    more » « less
  3. Meka, Raghu (Ed.)
    Matrix completion tackles the task of predicting missing values in a low-rank matrix based on a sparse set of observed entries. It is often assumed that the observation pattern is generated uniformly at random or has a very specific structure tuned to a given algorithm. There is still a gap in our understanding when it comes to arbitrary sampling patterns. Given an arbitrary sampling pattern, we introduce a matrix completion algorithm based on network flows in the bipartite graph induced by the observation pattern. For additive matrices, we show that the electrical flow is optimal, and we establish error upper bounds customized to each entry as a function of the observation set, along with matching minimax lower bounds. Our results show that the minimax squared error for recovery of a particular entry in the matrix is proportional to the effective resistance of the corresponding edge in the graph. Furthermore, we show that the electrical flow estimator is equivalent to the least squares estimator. We apply our estimator to the two-way fixed effects model and show that it enables us to accurately infer individual causal effects and the unit-specific and time-specific confounders. For rank-1 matrices, we use edge-disjoint paths to form an estimator that achieves minimax optimal estimation when the sampling is sufficiently dense. Our discovery introduces a new family of estimators parametrized by network flows, which provide a fine-grained and intuitive understanding of the impact of the given sampling pattern on the difficulty of estimation at an entry-specific level. This graph-based approach allows us to quantify the inherent complexity of matrix completion for individual entries, rather than relying solely on global measures of performance. 
    more » « less
  4. null (Ed.)
    Matrix completion, the problem of completing missing entries in a data matrix with low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank type assumptions. In this paper, we study the tensor completion problem when the sampling pattern is deterministic and possibly non-uniform. We first propose an efficient weighted Higher Order Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-rank tensor from noisy observations and then derive the error bounds under a properly weighted metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real datasets in numerical simulations. 
    more » « less
  5. We study a matrix completion problem that lever-ages a hierarchical structure of social similarity graphs as side information in the context of recommender systems. We assume that users are categorized into clusters, each of which comprises sub-clusters (or what we call “groups”). We consider a low-rank matrix model for the rating matrix, and a hierarchical stochastic block model that well respects practically-relevant social graphs.Under this setting, we characterize the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) as a function of the quality of graph side information (to be detailed) by proving sharp upper and lower bounds on the sample complexity. Furthermore, we develop a matrix completion algorithm and empirically demonstrate via extensive experiments that the proposed algorithm achieves the optimal sample complexity. 
    more » « less