Abstract Jumping microrobots and insects power their impressive leaps through systems of springs and latches. Using springs and latches, rather than motors or muscles, as actuators to power jumps imposes new challenges on controlling the performance of the jump. In this paper, we show how tuning the motor and spring relative to one another in a torque reversal latch can lead to an ability to control jump output, producing either tuneable (variable) or stereotyped jumps. We develop and utilize a simple mathematical model to explore the underlying design, dynamics, and control of a torque reversal mechanism, provides the opportunity to achieve different outcomes through the interaction between geometry, spring properties, and motor voltage. We relate system design and control parameters to performance to guide the design of torque reversal mechanisms for either variable or stereotyped jump performance. We then build a small (356 mg) microrobot and characterize the constituent components (e.g. motor and spring). Through tuning the actuator and spring relative to the geometry of the torque reversal mechanism, we demonstrate that we can achieve jumping microrobots that both jump with different take-off velocities given the actuator input (variable jumping), and those that jump with nearly the same take-off velocity with actuator input (stereotyped jumping). The coupling between spring characteristics and geometry in this system has benefits for resource-limited microrobots, and our work highlights design combinations that have synergistic impacts on output, compared to others that constrain it. This work will guide new design principles for enabling control in resource-limited jumping microrobots.
more »
« less
An Energy-Dense Two-Part Torsion Spring Architecture and Design Tool
Emerging wearable, assistive, and mobile robots seek to interact with the environment and/or humans in a compliant, dynamic, and adaptable way. Springs are critical to achieving this objective, but the associated increase in volume, mass, and complexity is limiting their application and impact in this rapidly developing field. This article presents a novel rotary spring architecture that is both lightweight and compact. Our two-part spring consists of radially-spaced cantilever beams that interface with an internal, gear-like camshaft. We present the concept and equations governing their mechanics and design. To facilitate broad adoption, we introduce an open-source design tool, which enables the design of custom springs in minutes instead of hours or days. We also empirically demonstrate our design with four test springs and validate the achievement of target spring rates and deflections. Finally, we present several redesigns of existing springs in the robotics literature to demonstrate the wide applicability of our spring architecture.
more »
« less
- Award ID(s):
- 2024237
- PAR ID:
- 10536121
- Publisher / Repository:
- IEEE Transactions on Mechatronics
- Date Published:
- Journal Name:
- IEEE/ASME Transactions on Mechatronics
- Volume:
- 29
- Issue:
- 3
- ISSN:
- 1083-4435
- Page Range / eLocation ID:
- 2373 to 2384
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work we present the design of a swimming robot that is inspired by the body shape modulation of small microorganisms. Amoebas are small single celled organisms that locomote through deformation and shape change of their body. To achieve similar shape modulation for swimming propulsion in a robot we developed a novel flexible appendage using tape springs. A tape spring is an elongated strip of metal with a curved cross-section that can act as a stiff structure when loaded against the curvature, while it can easily buckle when loaded with the curvature. We develop a tape spring appendage that is capable of freely deforming its perimeter through two actuation inputs. In the first portion of this paper we develop the kinematics of the appendage mechanisms and compare with experiment. Next we present the design of a surface locomoting robot that uses two appendages for propulsion. From the appendage kinematics we derive the local connection vector field for locomotion kinematics and study the optimal gait for forward swimming. Lastly, we demonstrate robot swimming performance in open water conditions. The novel appendage design in this robot is advantageous because it enables omnidirectional movement, the appendages will not tangle in debris, and they are robust to collisions and contact with structures.more » « less
-
Abstract Collaborative robots must simultaneously be safe enough to operate in close proximity to human operators and powerful enough to assist users in industrial tasks such as lifting heavy equipment. The requirement for safety necessitates that collaborative robots are designed with low-powered actuators. However, some industrial tasks may require the robot to have high payload capacity and/or long reach. For collaborative robot designs to be successful, they must find ways of addressing these conflicting design requirements. One promising strategy for navigating this tradeoff is through the use of static balancing mechanisms to offset the robot’s self-weight, thus enabling the selection of low-powered actuators. In this paper, we introduce a novel, two degrees-of-freedom static balancing mechanism based on spring-loaded, wire-wrapped cams. We also present an optimization-based cam design method that guarantees the cams stay convex, ensures the springs stay below their extensions limits, and minimizes sensitivity to unmodeled deviations from the nominal spring constant. Additionally, we present a model of the effect of friction between the wire and the cam. Lastly, we show experimentally that the torque generated by the cam mechanism matches the torque predicted in our modeling approach. Our results also suggest that the effects of wire-cam friction are significant for non-circular cams.more » « less
-
Abstract High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present “oases” of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing their impact on trace gas-oxidizers in the surrounding soils. We assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy/carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.more » « less
-
Abstract Over 180 springs emerge in the Panamint Range near Death Valley National Park, CA, yet, these springs have received very little hydrogeological attention despite their cultural, historical, and ecological importance. Here, we address the following questions: (1) which rock units support groundwater flow to springs in the Panamint Range, (2) what are the geochemical kinetics of these aquifers, and (3) and what are the residence times of these springs? All springs are at least partly supported by recharge in and flow through dolomitic units, namely, the Noonday Dolomite, Kingston Peak Formation, and Johnnie Formation. Thus, the geochemical composition of springs can largely be explained by dedolomitization: the dissolution of dolomite and gypsum with concurrent precipitation of calcite. However, interactions with hydrothermal deposits have likely influenced the geochemical composition of Thorndike Spring, Uppermost Spring, Hanaupah Canyon springs, and Trail Canyon springs. Faults are important controls on spring emergence. Seventeen of twenty‐one sampled springs emerge at faults (13 emerge at low‐angle detachment faults). On the eastern side of the Panamint Range, springs emerge where low‐angle faults intersect nearly vertical Late Proterozoic, Cambrian, and Ordovician sedimentary units. These geologic units are not present on the western side of the Panamint Range. Instead, springs on the west side emerge where low‐angle faults intersect Cenozoic breccias and fanglomerates. Mean residence times of springs range from 33 (±30) to 1,829 (±613) years. A total of 11 springs have relatively short mean residence times less than 500 years, whereas seven springs have mean residence times greater than 1,000 years. We infer that the Panamint Range springs are extremely vulnerable to climate change due to their dependence on local recharge, disconnection from regional groundwater flow (Death Valley Regional Flow System ‐ DVRFS), and relatively short mean residence times as compared with springs that are supported by the DVRFS (e.g., springs in Ash Meadows National Wildlife Refuge). In fact, four springs were not flowing during this campaign, yet they were flowing in the 1990s and 2000s.more » « less
An official website of the United States government

