Piracy and overproduction of hardware intellectual properties are growing concerns for the semiconductor industry under the fabless paradigm. Although chip designers have attempted to secure their designs against these threats by means of logic locking and obfuscation, due to the increasing number of powerful oracle-guided attacks, they are facing an ever-increasing challenge in evaluating the security of their designs and their associated overhead. Especially while many so-called "provable" logic locking techniques are subjected to a novel attack surface, overcoming these attacks may impose a huge overhead on the circuit. Thus, in this paper, after investigating the shortcoming of state-of-the-art graph neural network models in logic locking and refuting the use of hamming distance as a proper key accuracy metric, we employ two machine learning models, a decision tree to predict the security degree of the locked benchmarks and a convolutional neural network to assign a low-overhead and secure locking scheme to a given circuit. We first build multi-label datasets by running different attacks on locked benchmarks with existing logic locking methods to evaluate the security and compute the imposed area overhead. Then, we design and train a decision tree model to learn the features of the created dataset and predict the security degree of each given locked circuit. Furthermore, we utilize a convolutional neural network model to extract more features, obtain higher accuracy, and consider overhead. Then, we put our trained models to the test against different unseen benchmarks. The experimental results reveal that the convolutional neural network model has a higher capability for extracting features from unseen, large datasets which comes in handy in assigning secure and low-overhead logic locking to a given netlist. 
                        more » 
                        « less   
                    
                            
                            Cross-Feature Transfer Learning for Efficient Tensor Program Generation
                        
                    
    
            Tuning tensor program generation involves navigating a vast search space to find optimal program transformations and measurements for a program on the target hardware. The complexity of this process is further amplified by the exponential combinations of transformations, especially in heterogeneous environments. This research addresses these challenges by introducing a novel approach that learns the joint neural network and hardware features space, facilitating knowledge transfer to new, unseen target hardware. A comprehensive analysis is conducted on the existing state-of-the-art dataset, TenSet, including a thorough examination of test split strategies and the proposal of methodologies for dataset pruning. Leveraging an attention-inspired technique, we tailor the tuning of tensor programs to embed both neural network and hardware-specific features. Notably, our approach substantially reduces the dataset size by up to 53% compared to the baseline without compromising Pairwise Comparison Accuracy (PCA). Furthermore, our proposed methodology demonstrates competitive or improved mean inference times with only 25–40% of the baseline tuning time across various networks and target hardware. The attention-based tuner can effectively utilize schedules learned from previous hardware program measurements to optimize tensor program tuning on previously unseen hardware, achieving a top-5 accuracy exceeding 90%. This research introduces a significant advancement in autotuning tensor program generation, addressing the complexities associated with heterogeneous environments and showcasing promising results regarding efficiency and accuracy. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10536154
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 513
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High-performance kernel libraries are critical to exploiting accelerators and specialized instructions in many applications. Because compilers are difficult to extend to support diverse and rapidly-evolving hardware targets, and automatic optimization is often insufficient to guarantee state-of-the-art performance, these libraries are commonly still coded and optimized by hand, at great expense, in low-level C and assembly. To better support development of high-performance libraries for specialized hardware, we propose a new programming language, Exo, based on the principle of exocompilation: externalizing target-specific code generation support and optimization policies to user-level code. Exo allows custom hardware instructions, specialized memories, and accelerator configuration state to be defined in user libraries. It builds on the idea of user scheduling to externalize hardware mapping and optimization decisions. Schedules are defined as composable rewrites within the language, and we develop a set of effect analyses which guarantee program equivalence and memory safety through these transformations. We show that Exo enables rapid development of state-of-the-art matrix-matrix multiply and convolutional neural network kernels, for both an embedded neural accelerator and x86 with AVX-512 extensions, in a few dozen lines of code each.more » « less
- 
            null (Ed.)To deploy powerful deep neural network (DNN) into smart, but resource limited IoT devices, many prior works have been proposed to compress DNN to reduce the network size and computation complexity with negligible accuracy degradation, such as weight quantization, network pruning, convolution decomposition, etc. However, by utilizing conventional DNN compression methods, a smaller, but fixed, network is generated from a relative large background model to achieve resource limited hardware acceleration. However, such optimization lacks the ability to adjust its structure in real-time to adapt for a dynamic computing hardware resource allocation and workloads. In this paper, we mainly review our two prior works [13], [15] to tackle this challenge, discussing how to construct a dynamic DNN by means of either uniform or non-uniform sub-nets generation methods. Moreover, to generate multiple non-uniform sub-nets, [15] needs to fully retrain the background model for each sub-net individually, named as multi-path method. To reduce the training cost, in this work, we further propose a single-path sub-nets generation method that can sample multiple sub-nets in different epochs within one training round. The constructed dynamic DNN, consisting of multiple sub-nets, provides the ability to run-time trade-off the inference accuracy and latency according to hardware resources and environment requirements. In the end, we study the the dynamic DNNs with different sub-nets generation methods on both CIFAR-10 and ImageNet dataset. We also present the run-time tuning of accuracy and latency on both GPU and CPU.more » « less
- 
            This paper investigates the short-term wind farm generation forecast. It is observed from the real wind farm generation measurements that wind farm generation exhibits distinct features, such as the non-stationarity and the heterogeneous dynamics of ramp and non-ramp events across different classes of wind turbines. To account for the distinct features of wind farm generation, we propose a Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced self-evolving neural networks-based short-term wind farm generation forecast. Using DSPOT, the proposed method first classifies the wind farm generation data into ramp and non-ramp datasets, where time-varying dynamics are taken into account by utilizing dynamic ramp thresholds to separate the ramp and non-ramp events. We then train different neural networks based on each dataset to learn the different dynamics of wind farm generation by the NeuroEvolution of Augmenting Topologies (NEAT), which can obtain the best network topology and weighting parameters. As the efficacy of the neural networks relies on the quality of the training datasets (i.e., the classification accuracy of the ramp and non-ramp events), a Bayesian optimization-based approach is developed to optimize the parameters of DSPOT to enhance the quality of the training datasets and the corresponding performance of the neural networks. Based on the developed self-evolving neural networks, both distributional and point forecasts are developed. The experimental results show that compared with other forecast approaches, the proposed forecast approach can substantially improve the forecast accuracy, especially for ramp events. The experiment results indicate that the accuracy improvement in a 60 min horizon forecast in terms of the mean absolute error (MAE) is at least 33.6% for the whole year data and at least 37% for the ramp events. Moreover, the distributional forecast in terms of the continuous rank probability score (CRPS) is improved by at least 35.8% for the whole year data and at least 35.2% for the ramp events.more » « less
- 
            Tensor decomposition is an effective approach to compress over-parameterized neural networks and to enable their deployment on resource-constrained hardware platforms. However, directly applying tensor compression in the training process is a challenging task due to the difficulty of choosing a proper tensor rank. In order to address this challenge, this paper proposes a low-rank Bayesian tensorized neural network. Our Bayesian method performs automatic model compression via an adaptive tensor rank determination. We also present approaches for posterior density calculation and maximum a posteriori (MAP) estimation for the end-to-end training of our tensorized neural network. We provide experimental validation on a two-layer fully connected neural network, a 6-layer CNN and a 110-layer residual neural network where our work produces 7.4X to 137X more compact neural networks directly from the training while achieving high prediction accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    