As use of adaptive learning technology in STEM courses gains traction, studies evaluating its impacts are important to undertake. Adaptive e‐learning platforms provide personalized, flexible learning via monitoring of student progress and performance and subsequent provision of an individualized learning path containing various resources. In this study, adaptive technology was utilized in blended and flipped versions of a numerical methods course. A particular challenge with flipped instruction is preclass preparation, in which videos with the same instruction for all students are often assigned. Therefore, to diversify preclass learning, the instructor developed adaptive lessons via an NSF grant and rigorously assessed outcomes in this flipped class with adaptive learning. In addition, to fully evaluate the lessons and respond to calls from the literature, the lessons were implemented and evaluated in a blended version of the course, which was lecture‐based with available online resources. Data from previous semesters of flipped and blended instruction (without adaptive learning were available), enabling a comparison of four instructional methods. The comparisons consisted of direct assessment (i.e., exam questions) and affective assessment via a survey (i.e., perceptions of the classroom environment). An analysis was performed for students collectively and for underrepresented minority students in engineering. Focus groups enabled a comparison of student perspectives of using adaptive technology in blended versus flipped classrooms as well as by demographic. Upon combining these outcomes, including a notable Cohen's
This content will become publicly available on August 27, 2025
As the use of computers in education increases, adaptive learning platforms are becoming more common. However, these adaptive systems are typically designed to support acquisition of declarative knowledge and/or procedural fluency but rarely address conceptual learning. In this work, we developed the Crystallography Adaptive Learning Module (CALM) for materials science to provide students a tool for individualized conceptual learning. We used a randomized quasi‐experimental design comparing two instructional designs with different levels of computer‐provided direction and student agency. Undergraduate students were randomly assigned to one of two different instructional designs; one design had students complete an individualized, adaptive path using the CALM (
- PAR ID:
- 10536302
- Publisher / Repository:
- John Wiley & Sons
- Date Published:
- Journal Name:
- Computer Applications in Engineering Education
- ISSN:
- 1061-3773
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract d = 0.34 for open‐ended‐response performance, the flipped classroom with adaptive learning may be the best method for this STEM course. -
Classroom research has demonstrated the capacity for significantly influencing student learning by engaging students in evaluation of previously submitted work as an intentional priming exercise for learning; we call this experience Learning by Evaluating (LbE). Expanding on current LbE research, we set forth to investigate the impact on student learning by intentionally differing the quality of examples evaluated by the students using adaptive comparative judgement. In this research, university design students (N = 468 students) were randomly assigned to one of three treatment groups; while each group evaluated previously collected student work as an LbE priming activity, the work evaluated by each group differed in quality. Using a three-group experimental design, one group of students only evaluated high quality examples, the second only evaluated low quality examples, and the third group of students evaluated a set of mixed-quality examples of the assignment they were about to work on. Following these LbE priming evaluations, students completed the assigned work and then their projects were evaluated to determine if there was a difference between student performance by treatment condition. Additional qualitative analysis was completed on student LbE rationales to explore similarities and differences in student cognitive judgments based on intervention grouping. No significant difference was found between the groups in terms of achievement, but several differences in group judgement approach were identified and future areas needing investigation were highlighted.more » « less
-
Recently there have been calls to integrate engineering design experiences to support students’ scientific understanding. There is a need for instructional strategies in which learners are encouraged to identify and reflect on ways scientific principles can be applied to inform their designs and evaluate alternative designs. Studies show that the inclusion of contrasting cases can improve students’ conceptual understanding and reasoning. Yet, such tasks depend on how they are scaffolded. In this study, pre-service elementary teachers in a conceptual physics course analyzed contrasting solutions to a design problem. Two forms of scaffolds were embedded to facilitate case evaluation: 1) identify similarities and differences and 2) evaluate and produce an argument for a “good” design solution. We investigated the scientific ideas that the participants used as they contrasted multiple design solutions and the impact of the two approaches in students’ understanding of heat transfer. We found no significant differences in students’ conceptual understanding, but the argumentation condition had a significantly larger number of scientific ideas ‘cited’, ‘explained’ or ‘applied’ in their solutions,. The results suggest that contrasting designs with argumentation may be a promising intervention to facilitate students to use science concepts in engineering design. Future work is needed in order to investigate better scaffolds that can help students’ increase in conceptual learning.more » « less
-
Recently there have been calls to integrate engineering design experiences to support students’ scientific understanding. There is a need for instructional strategies in which learners are encouraged to identify and reflect on ways scientific principles can be applied to inform their designs and evaluate alternative designs. Studies show that the inclusion of contrasting cases can improve students’ conceptual understanding and reasoning. Yet, such tasks depend on how they are scaffolded. In this study, pre-service elementary teachers in a conceptual physics course analyzed contrasting solutions to a design problem. Two forms of scaffolds were embedded to facilitate case evaluation: 1) identify similarities and differences and 2) evaluate and produce an argument for a “good” design solution. We investigated the scientific ideas that the participants used as they contrasted multiple design solutions and the impact of the two approaches in students’ understanding of heat transfer. We found no significant differences in students’ conceptual understanding, but the argumentation condition had a significantly larger number of scientific ideas ‘cited’, ‘explained’ or ‘applied’ in their solutions,. The results suggest that contrasting designs with argumentation may be a promising intervention to facilitate students to use science concepts in engineering design. Future work is needed in order to investigate better scaffolds that can help students’ increase in conceptual learning.more » « less
-
null (Ed.)This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels. Although the classroom orchestration of the particular learning design was customised for specific audiences and contexts, findings from this study suggest that the core components of the learning design, such as content, assessment, and pedagogy, and their alignment among them, resulted in students’ learning. Specifically, results from a pre-post science assessment suggest that the three student groups arrived at similar understanding post-intervention levels, along with a significant aggregate growth in their scientific understanding. Regarding design performance, students in different groups demonstrated different levels of success in meeting design constraints. The findings also suggest that students’ success rate in meeting the design constraints directly influenced their final design performance, where middle-school students had better performance than students in the other groups. That is, across the board, students increased their conceptual understanding of heat transfer, Earth, and solar science and were able to produce feasible designs. Implications of the study include how learning experiences with engineering and science simulations should be designed so that teachers can adopt and adapt materials for their specific audiences, contexts, and settings.more » « less