skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptivity or agency? Educational technology design for conceptual learning of materials science
Abstract As the use of computers in education increases, adaptive learning platforms are becoming more common. However, these adaptive systems are typically designed to support acquisition of declarative knowledge and/or procedural fluency but rarely address conceptual learning. In this work, we developed the Crystallography Adaptive Learning Module (CALM) for materials science to provide students a tool for individualized conceptual learning. We used a randomized quasi‐experimental design comparing two instructional designs with different levels of computer‐provided direction and student agency. Undergraduate students were randomly assigned to one of two different instructional designs; one design had students complete an individualized, adaptive path using the CALM (N = 80), and the other gave students the freedom to explore CALM's learning resources but with limited guidance (N = 85). Within these two designs, we also investigated students among different cumulative grade point average (GPA) groups. While there was no statistically significant difference in the measure of conceptual understanding between instructional designs or among the groups with the same GPA, there is evidence to suggest the CALM improves conceptual understanding of students in the middle GPA group. Students using CALM also showed increased participation with the interactive learning videos compared to the other design. The number of videos watched in each instructional condition aligns with overall academic performance as the low GPA group received the most assigned supplements but watched the least videos by choice. This study provides insight for technology developers on how to develop educational adaptive technology systems that provide a proper level of student agency to promote conceptual understanding in challenging STEM topics.  more » « less
Award ID(s):
2135190 1821638
PAR ID:
10536302
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
John Wiley & Sons
Date Published:
Journal Name:
Computer Applications in Engineering Education
ISSN:
1061-3773
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Classroom research has demonstrated the capacity for significantly influencing student learning by engaging students in evaluation of previously submitted work as an intentional priming exercise for learning; we call this experience Learning by Evaluating (LbE). Expanding on current LbE research, we set forth to investigate the impact on student learning by intentionally differing the quality of examples evaluated by the students using adaptive comparative judgement. In this research, university design students (N = 468 students) were randomly assigned to one of three treatment groups; while each group evaluated previously collected student work as an LbE priming activity, the work evaluated by each group differed in quality. Using a three-group experimental design, one group of students only evaluated high quality examples, the second only evaluated low quality examples, and the third group of students evaluated a set of mixed-quality examples of the assignment they were about to work on. Following these LbE priming evaluations, students completed the assigned work and then their projects were evaluated to determine if there was a difference between student performance by treatment condition. Additional qualitative analysis was completed on student LbE rationales to explore similarities and differences in student cognitive judgments based on intervention grouping. No significant difference was found between the groups in terms of achievement, but several differences in group judgement approach were identified and future areas needing investigation were highlighted. 
    more » « less
  2. Recently there have been calls to integrate engineering design experiences to support students’ scientific understanding. There is a need for instructional strategies in which learners are encouraged to identify and reflect on ways scientific principles can be applied to inform their designs and evaluate alternative designs. Studies show that the inclusion of contrasting cases can improve students’ conceptual understanding and reasoning. Yet, such tasks depend on how they are scaffolded. In this study, pre-service elementary teachers in a conceptual physics course analyzed contrasting solutions to a design problem. Two forms of scaffolds were embedded to facilitate case evaluation: 1) identify similarities and differences and 2) evaluate and produce an argument for a “good” design solution. We investigated the scientific ideas that the participants used as they contrasted multiple design solutions and the impact of the two approaches in students’ understanding of heat transfer. We found no significant differences in students’ conceptual understanding, but the argumentation condition had a significantly larger number of scientific ideas ‘cited’, ‘explained’ or ‘applied’ in their solutions,. The results suggest that contrasting designs with argumentation may be a promising intervention to facilitate students to use science concepts in engineering design. Future work is needed in order to investigate better scaffolds that can help students’ increase in conceptual learning. 
    more » « less
  3. Recently there have been calls to integrate engineering design experiences to support students’ scientific understanding. There is a need for instructional strategies in which learners are encouraged to identify and reflect on ways scientific principles can be applied to inform their designs and evaluate alternative designs. Studies show that the inclusion of contrasting cases can improve students’ conceptual understanding and reasoning. Yet, such tasks depend on how they are scaffolded. In this study, pre-service elementary teachers in a conceptual physics course analyzed contrasting solutions to a design problem. Two forms of scaffolds were embedded to facilitate case evaluation: 1) identify similarities and differences and 2) evaluate and produce an argument for a “good” design solution. We investigated the scientific ideas that the participants used as they contrasted multiple design solutions and the impact of the two approaches in students’ understanding of heat transfer. We found no significant differences in students’ conceptual understanding, but the argumentation condition had a significantly larger number of scientific ideas ‘cited’, ‘explained’ or ‘applied’ in their solutions,. The results suggest that contrasting designs with argumentation may be a promising intervention to facilitate students to use science concepts in engineering design. Future work is needed in order to investigate better scaffolds that can help students’ increase in conceptual learning. 
    more » « less
  4. Problem solving is a signature skill of engineers. Incorporating videos in engineering education has potential to stimulate multi-senses and further open new ways of learning and thinking. Here, problem solving was examined on problems written by previous students that applied course concepts by reverse engineering the actions in videos. Since the videos usually come from YouTube, the student-written problems are designated YouTube problems. This research focused on examining the rigor of YouTube problems as well as students’ problem-solving skills when solving YouTube problems compared to Textbook problems. A quasi-experimental, treatment/control group design was employed, and data collected was evaluated using multiple instruments. NASA Task Load Index survey was used to collect 􏰗1200 ratings that assessed rigor of homework problems. Problem-solving ability was assessed using a previously-developed rubric with over 2600 student solutions scored. In the treatment group where students were assigned ten Textbook and nine YouTube problems, students reported an overall similarity in rigor for both YouTube and Textbook problems. Students in the treatment group displayed 􏰗6% better problem solving when completing YouTube problems compared to Textbook problems. Although higher perceptions of problem difficulty correlated with lower problem-solving ability across both groups and problem types, students in the treatment group exhibited smaller decreases in problem-solving ability as a result of increasing difficulty in the Textbook problems. Overall, student-written problems inspired by YouTube videos can easily be adapted as homework practice and possess potential benefits in enhancing students’ learning experience. Link: https://www.ijee.ie/contents/c370521.html 
    more » « less
  5. This study aimed to compare the effects of immersive virtual reality (IVR) videos and 2D educational videos on cognitive (i.e. conceptual knowledge) and non-cognitive (i.e. self-efficacy) learning outcomes. Fifty-three students from an all-girls middle school learned about humans’ impact on the ocean through either IVR videos, using a virtual reality (VR) headset, or through 2D videos, using a computer monitor. Results replicate previous findings suggesting that conceptual knowledge gains between IVR and desktop learning experiences is not significant. Also, results show that participants who watched IVR videos reported higher self-efficacy scores and expressed higher feelings of presence than participants who watched the same videos using a computer monitor. Finally, further analyses revealed that the feeling of presence mediated both cognitive and non-cognitive learning outcomes. 
    more » « less