Abstract For$$E \subset \mathbb {N}$$, a subset$$R \subset \mathbb {N}$$isE-intersectiveif for every$$A \subset E$$having positive relative density,$$R \cap (A - A) \neq \varnothing $$. We say thatRischromatically E-intersectiveif for every finite partition$$E=\bigcup _{i=1}^k E_i$$, there existsisuch that$$R\cap (E_i-E_i)\neq \varnothing $$. When$$E=\mathbb {N}$$, we recover the usual notions of intersectivity and chromatic intersectivity. We investigate to what extent the known intersectivity results hold in the relative setting when$$E = \mathbb {P}$$, the set of primes, or other sparse subsets of$$\mathbb {N}$$. Among other things, we prove the following: (1) the set of shifted Chen primes$$\mathbb {P}_{\mathrm {Chen}} + 1$$is both intersective and$$\mathbb {P}$$-intersective; (2) there exists an intersective set that is not$$\mathbb {P}$$-intersective; (3) every$$\mathbb {P}$$-intersective set is intersective; (4) there exists a chromatically$$\mathbb {P}$$-intersective set which is not intersective (and therefore not$$\mathbb {P}$$-intersective).
more »
« less
A 2-categorical proof of Frobenius for fibrations defined from a generic point
Abstract Consider a locally cartesian closed category with an object$$\mathbb{I}$$and a class of trivial fibrations, which admit sections and are stable under pushforward and retract as arrows. Define the fibrations to be those maps whose Leibniz exponential with the generic point of$$\mathbb{I}$$defines a trivial fibration. Then the fibrations are also closed under pushforward.
more »
« less
- Award ID(s):
- 2204304
- PAR ID:
- 10536334
- Publisher / Repository:
- Mathematical Structures in Computer Science
- Date Published:
- Journal Name:
- Mathematical Structures in Computer Science
- ISSN:
- 0960-1295
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials.more » « less
-
Abstract Let$$\alpha \colon X \to Y$$be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under$$\alpha $$is semistable if the genus ofYis at least$$1$$and stable if the genus ofYis at least$$2$$. We prove this conjecture if the map$$\alpha $$is general in any component of the Hurwitz space of covers of an arbitrary smooth curveY.more » « less
-
Abstract Define theCollatz map$${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$$on the positive integers$$\mathbb {N}+1 = \{1,2,3,\dots \}$$by setting$${\operatorname {Col}}(N)$$equal to$$3N+1$$whenNis odd and$$N/2$$whenNis even, and let$${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$$denote the minimal element of the Collatz orbit$$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $$. The infamousCollatz conjectureasserts that$${\operatorname {Col}}_{\min }(N)=1$$for all$$N \in \mathbb {N}+1$$. Previously, it was shown by Korec that for any$$\theta> \frac {\log 3}{\log 4} \approx 0.7924$$, one has$${\operatorname {Col}}_{\min }(N) \leq N^\theta $$for almost all$$N \in \mathbb {N}+1$$(in the sense of natural density). In this paper, we show that foranyfunction$$f \colon \mathbb {N}+1 \to \mathbb {R}$$with$$\lim _{N \to \infty } f(N)=+\infty $$, one has$${\operatorname {Col}}_{\min }(N) \leq f(N)$$for almost all$$N \in \mathbb {N}+1$$(in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a$$3$$-adic cyclic group$$\mathbb {Z}/3^n\mathbb {Z}$$at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.more » « less
-
Abstract We prove three results concerning the existence of Bohr sets in threefold sumsets. More precisely, lettingGbe a countable discrete abelian group and$$\phi _1, \phi _2, \phi _3: G \to G$$be commuting endomorphisms whose images have finite indices, we show that(1)If$$A \subset G$$has positive upper Banach density and$$\phi _1 + \phi _2 + \phi _3 = 0$$, then$$\phi _1(A) + \phi _2(A) + \phi _3(A)$$contains a Bohr set. This generalizes a theorem of Bergelson and Ruzsa in$$\mathbb {Z}$$and a recent result of the first author.(2)For any partition$$G = \bigcup _{i=1}^r A_i$$, there exists an$$i \in \{1, \ldots , r\}$$such that$$\phi _1(A_i) + \phi _2(A_i) - \phi _2(A_i)$$contains a Bohr set. This generalizes a result of the second and third authors from$$\mathbb {Z}$$to countable abelian groups.(3)If$$B, C \subset G$$have positive upper Banach density and$$G = \bigcup _{i=1}^r A_i$$is a partition,$$B + C + A_i$$contains a Bohr set for some$$i \in \{1, \ldots , r\}$$. This is a strengthening of a theorem of Bergelson, Furstenberg and Weiss. All results are quantitative in the sense that the radius and rank of the Bohr set obtained depends only on the indices$$[G:\phi _j(G)]$$, the upper Banach density ofA(in (1)), or the number of sets in the given partition (in (2) and (3)).more » « less
An official website of the United States government

