skip to main content


This content will become publicly available on June 1, 2025

Title: Board 417: Understanding the Implementation of the STEM-ID Curricula in Middle School Engineering Classrooms (Fundamental)
Despite recent progress in the adoption of engineering at the K-12 level, the scarcity of high-quality engineering curricula remains a challenge. With support from a previous NSF grant, our research team iteratively developed the three-year middle school engineering curricula, STEM-ID. Through a series of contextualized challenges, the 18-week STEM-ID curricula incorporate foundational mathematics and science skills and practices and advanced manufacturing tools such as computer aided design (CAD) and 3D printing, while introducing engineering concepts like pneumatics, aeronautics, and robotics. Our current project, supported by an NSF DRK-12 grant, seeks to examine the effectiveness of STEM-ID when implemented in diverse schools within a large school district in the southeastern United States. This paper will present early findings of the project’s implementation research conducted over two school years with a total of ten engineering teachers in nine schools. Guided by the Innovation Implementation framework (Century & Cassata, 2014), our implementation research triangulates observation, interview, and survey data to describe overall implementation of STEM-ID as well as implementation of six critical components of the curricula: engaging students in the engineering design process (EDP), math-science integration, collaborative group work, contextualized challenges, utilization of advanced manufacturing technology, and utilization of curriculum materials. Implementation data provide clear evidence that each of the critical components of STEM-ID were evident as the curricula were enacted in participating schools. Our data indicate strong implementation of four critical components (utilization of materials, math-science integration, collaborative group work, and contextualized challenges) across teachers. Engaging students in the EDP and advanced-manufacturing technology were implemented, to varying degrees, by all but two teachers. As expected, implementation of critical components mirrored overall implementation patterns, with teachers who completed more of the curricula tending to implement the critical components more fully than those who did not complete the curricula. In addition to tracking implementation of critical components, the project is also interested in understanding contextual factors that influence enactment of the curricula, including characteristics of the STEM-ID curricula, teachers, and organizations (school and district). Interview and observation data suggest a number of teacher characteristics that may account for variations in implementation including teachers’ organization and time management skills, self-efficacy, and pedagogical content knowledge (PCK). Notably, prior teaching experience did not consistently translate into higher completion rates, emphasizing the need for targeted support regardless of teachers' backgrounds. This research contributes valuable insights into the challenges and successes of implementing engineering curricula in diverse educational settings.  more » « less
Award ID(s):
2101441
NSF-PAR ID:
10536415
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Portland, Oregon
Sponsoring Org:
National Science Foundation
More Like this
  1. Through the semester-long engineering curricula, middle school students complete a series of contextualized challenges that integrate foundational mathematics and science, introduce advanced manufacturing tools (CAD, 3-D printing), and engage students in the engineering design process. Funded by a National Science Foundation (NSF) DRK12 grant, our project is in the process of scaling the curricula in a large urban school district. Over the previous two years, the project has enlisted two cohorts of engineering teachers to implement the curricula in nine middle schools. In addition to understanding whether and how the critical components of the curricula are implemented in diverse school settings, our research team’s fidelity of implementation research investigates contextual factors that help explain why teachers and students engaged with the curricula the way they do. For this line of inquiry, we draw upon the Factor Framework (Century and Cassata, 2014; Century et al. 2012), which provides a comprehensive set of potential factors known to influence implementation of educational innovations. The framework organizes these implementation factors into five categories: characteristics of the innovation, characteristics of individual users, characteristics of the organization, elements of the environment, and networks. After consulting this framework to identify potential factors likely to influence the implementation, we analyzed teacher interview and classroom observation data collected over the course of three semesters of implementation to describe the degree to which various contextual factors either facilitated or limited implementation. Our data indicate three categories of factors influencing implementation: characteristics of the curriculum, characteristics of users (teachers and students), and characteristics of organizations (district, schools). Characteristics of the curriculum that facilitated implementation included features of the curricula and professional development including the perceived effectiveness of the curricula, the adaptability of the curricula, and the degree to which professional learning sessions provided adequate preparation for implementation. Characteristics of teachers identified as facilitating implementation included pedagogical content knowledge, self-efficacy, resourcefulness, and organizational and time management skills. Teachers reported that student interest in the curriculum challenges and STEM, more generally, was another facilitating factor whereas, to varying degrees, disruptive student behavior and students’ lack of foundational mathematics skills were reported as limiting factors. Teachers highlighted specific technological challenges, such as software licensing issues, as limiting factors. Otherwise, we found that teachers generally had sufficient resources to implement the curricula including adequate physical space, technological tools, and supplies. Across teachers and schools, we found that, overall, supportive school and district leadership facilitated implementation. In spite of an overall high level of support in participating schools, we did identify school and district policies with implications for implementation including school-wide scheduling and disciplinary policies that limited instructional time, policies for assigning and moving students among elective courses, and district-wide expectations for assessment and teaching certain additional engineering activities. We believe the findings of this study will be of interest to other researchers and practitioners exploring how engineering education innovations unfold in diverse classrooms and the array of factors that may account for variations in implementation patterns. 
    more » « less
  2. Research exploring the pedagogical content knowledge (PCK) of engineering teachers remains sparse and more studies are needed to highlight systematic ways in which teachers scaffold teaching of engineering in K-12 schools. As part of an NSF funded DRK-12 project conducting research on the implementation of the STEM-ID curricula, we investigated the PCK of six middle school engineering teachers implementing a semester-long curricula in their 6th, 7th, and 8th grade classrooms. Using the theoretical lens of the refined consensus model of PCK in science teaching, we present preliminary findings of ways in which teachers converted their personal PCK (pPCK) into enacted PCK (ePCK) in engineering. We provide implications for research and its impact on scaffolding effective engineering PCK for K-12 teaching. 
    more » « less
  3. In early 2020, a research collaboration between a college of engineering, a research institute, a pre-college STEM program, a rural school district, and the local advanced manufacturing industry began. The goal of this Innovative Technology Experiences for Students and Teachers (ITEST) project was to create community-based engineering design experiences for underserved middle school students (grades 6-8) from rural NC aimed to improve their cognitive (STEM content knowledge and career awareness) and non-cognitive (interest, self-efficacy, and STEM identity) outcomes, and ultimately lead to their increased participation in STEM fields, particularly engineering. The project leverages strategic partnerships to create a 3-part, grade-level specific Engineering Design and Exploration course that engages middle school students in authentic engineering design experiences that allow them to research, design, and problem-solve in a simulated advanced manufacturing environment. Shortly after receiving university approval to begin the research process, progress was halted due to an unprecedented global health crisis. The school district was closed for several weeks as administrators and teachers prepared to transition to remote learning. In addition, the district experienced unexpected teacher and administrator turnover. In the wake of such uncertainty, the partners have pivoted their research design to work more closely with industry partners while still maintaining an active relationship with the school district as they rebuild. This paper will describe the challenges faced, strategies employed, and lessons learned during the course development and implementation process. 
    more » « less
  4. 3D printing (3DP) has been becoming more and more popular throughout the education system from Kindergarten to University. High school is a critical period for students to decide their imminent university major selection which in turn will impact their future career choices. High school students are usually intrigued by hands-on tool such as 3DP which is also an important contributor to other courses such as robotics. The recent years have seen more investment and availability of 3DP in high schools, especially Career and Technical Education (CTE) programs. However, mere availability of 3DP is not enough for teachers to fully utilize its potential in their classrooms. While basic 3DP skills can be obtained through a few hours of training, the basic training is insufficient to ensure effective teaching Engineering Design Process (EDP) at the high school level. To address this problem, this project develops an EDP course tightly integrated with 3DP for preservice teachers (PST) who are going to enter the workforce in high schools. Engineering design process (EDP) has become an essential part for preservice teachers (PST), especially for high school STEM. 3DP brought transformative change to EDP which is an iterative process that needs virtual/physical prototyping. The new PST course on EDP will be purposefully integrated with an in-depth discussion of 3DP. The approach is to dissect a 3D printer’s hardware, explain each component’s function, introduce each component’s manufacturing methods, describe possible defects, and elucidate what works and what does not. This has at least four benefits: 1) PSTs will know what is possibly wrong when a printer or printing process fails, 2) PSTs will learn more manufacturing processes besides 3DP that can be used to support engineering design prototyping, 3) PSTs will know how to design something that can meet the manufacturing constraints, i.e., can be actually fabricated, and 4) reduce errors and frustrations caused by failed design and failed prints which happen frequently to novices in 3DP. After graduation, PSTs will bring the knowledge to their future high schools and will be more confident in teaching engineering design, reverse engineering, prototype development, manufacturing, and technology. The developed course will be implemented and assessed in a future semester. 
    more » « less
  5. In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. In summer of 2021, the first cohort of 12 teachers from Region 4 of Southeast Texas participated in the RET program at UH College of Technology (COT). This six-week program, open to local high school STEM teachers in Texas, sought to advance educators’ knowledge of concepts in design and manufacturing as a means of enriching high school curriculums and meeting foundational standards set by 2013’s Texas House Bill 5. These standards require enhanced STEM contents in high school curricula as a prerequisite for graduation, detailed in the Texas Essential Knowledge and Skills standard. Due to the pandemic situation, about 50% of the activities are online and the rest are face to face. About 40% of the time, teachers attended online workshops to enhance their knowledge of topics in engineering design and manufacturing before embarking on applicable research projects in the labs. Six UH COT engineering technology professors each led workshops in a week. The four tenure-track engineering mentors, assisted by student research assistants, each mentored three teachers on projects ranging from additive manufacturing to thermal/fluids, materials, and energy. The group also participated in field trips to local companies including ARC Specialties, Master Flo, Re:3D, and Forged Components. They worked with two instructional track engineering technology professors and one professor of education on applying their learnings to lesson plan design. Participants also met weekly for online Brown Bag teacher seminars to share their experiences and discuss curricula, which was organized by the RET master teacher. On the final day of the program, the teachers presented their curriculum prototype for the fall semester to the group and received completion certificates. The program assessment was led by the assessment specialist, Director of Assessment and Accreditation at UH COT. Teacher participants found the research experience with their mentors beneficial not only to them, but also to their students according to our findings from interviews. The mentors will visit their mentees’ classrooms to see the lesson plans being implemented. In the spring of 2022, the teachers will present their refined curricula at a RET symposium to be organized at UH and submit their standards-aligned plans to teachengineering.org for other K-12 educators to access. 
    more » « less