skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local beamforming and back-projection of induced earthquakes in Helsinki, southern Finland
Seismic array processing is routinely used to infer detailed earthquakeproperties of intermediate and large events, however, the sourceproperties of microseismicity often remain elusive. In this study, weuse high signal-to-noise ratio seismograms of 204 earthquakes induced bythe 6 km deep 2018 Espoo/Helsinki geothermal stimulation to evaluate thecapabilities of beamforming and back-projection array methods. We showthat mini array beamforming is sensitive to medium heterogeneity andrequires calibration to mitigate systematic slowness biases.A combinedand wave back-projection approach significantly improves depthresolution, reducing offsets to catalogue locations from km to m.Supported by numerical experiments, we demonstrate that back-projectionswimming patterns can constrain focal mechanisms. Our results imply thatback-projection of data collected over a wide azimuthal range can beused to monitor and characterize local-scale microseismicity, whereasbeamforming calibration requires independently obtained referenceobservations.  more » « less
Award ID(s):
2311206
PAR ID:
10536424
Author(s) / Creator(s):
; ;
Publisher / Repository:
Authorea, Inc.
Date Published:
Format(s):
Medium: X
Institution:
Authorea, Inc.
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seismic arrays constrain local wave propagation that can be used to infer earthquake source characteristics. Array processing is routinely used to infer detailed earthquake properties of intermediate and large events. However, the source properties of microseismicity often remain elusive. In this study, we use high signal-to-noise ratio seismograms of 204 ML 0.0–1.8 earthquakes induced by the 6 km deep 2018 Espoo/Helsinki geothermal stimulation to evaluate the performance and capabilities of beamforming and backprojection array methods. Using accurate travel-time-based event locations as a reference, we first show that miniarray beamforming is sensitive to medium heterogeneities and requires calibration to mitigate local systematic slowness biases. A catalog-based calibration significantly improves our multiarray beam raytracing estimates of source locations. Second, the application of the backprojection technique using P-wave signals with sufficient azimuthal coverage yields hypocenter estimates with generally good horizontal but poor vertical resolution. The short local source–receiver distances result in incomplete separation of P- and S-wave arrivals during backprojection. Numerical tests show that the relatively large S-wave amplitudes can influence coherent P-wave stacks, resulting in large location errors. Our combined P- and S-wave backprojection approach mitigates the influence of the large S-wave amplitude and improves the depth resolution significantly. The average depth offset to the reference catalog locations reduces from ≥1.4 km to ∼91 m. Third, 3D numerical simulations demonstrate that backprojection swimming patterns are not merely processing or configuration artifacts. We show that the swimming patterns correlate with and can resolve the source focal mechanism when the azimuthal wavefield sampling is sufficiently complete. Our work demonstrates that the backprojection techniques can help to better constrain important properties of local-scale microseismicity. 
    more » « less
  2. null (Ed.)
    The Advanced L band Phased Array Camera for Arecibo (ALPACA) will rely on RF-over-fiber signal transport and hybrid FPGA/GPU signal processing hardware for calibration, beamforming, and imaging. We report on signal transport system development, phase and gain stability requirements, and array signal processing algorithm development. 
    more » « less
  3. Abstract Ambient infrasound noise contains an abundance of information that is typically overlooked due to limitations of typical infrasound arrays. To evaluate the ability of large‐N infrasound arrays to identify weak signals hidden in background noise, we examine data from a 22‐element array in central Idaho, USA, spanning 58 days using a standard beamforming method. Our results include nearly continuous detections of diverse weak signals from infrasonic radiators, sometimes at surprising distances. We observe infrasound from both local (8 km) and distant (195 km) waterfalls. Thunderstorms and earthquakes are also notable sources, with distant thunderstorm infrasound observed from ∼800 to 900 km away. Our findings show that large‐N infrasound arrays can detect very weak signals below instrument and environmental noise floors, including from multiple simultaneous sources, enabling new infrasound monitoring applications and helping map the composition of background noise wavefields. 
    more » « less
  4. Abstract Microseismicity associated with fluid pressurization in the subsurface occurs during fluid injection but can also be triggered after injection shut‐in. Understanding the extent and duration of the post‐injection microseismicity is critical to limit the risk of fluid‐induced seismicity and insure the safe utilization of the subsurface. Using theoretical and numerical techniques, we investigated how aseismic slip on a fault plane evolves and stops after a fluid pressurization event. We found that the locking mechanisms controlling the arrest of aseismic slip highly depend on the initial fault stress criticality and the pressurization duration. The absolute arrest time of fault aseismic slip after injection shut‐in is proportional to the pressurization duration and increases significantly with the initial fault stress criticality. Given that microseismicity can be triggered by aseismic slip, these results provide insights into the mechanics controlling the arrest of microseismicity after fluid pressurization as a milestone toward induced seismicity mitigation strategies. 
    more » « less
  5. In this paper, a novel 2D Nolen beamforming phased array with 3D scanning capability to achieve high channel capacity is presented for multiple-input multiple-output (MIMO) Internet-of-Things (IoT) applications. The proposed 2D beamforming phased array is designed by stacking a fundamental building block consisting of a 3 × 3 tunable Nolen matrix, which applies a small number of phase shifters with a small tunning range and reduces the complexity of the beam-steering control mechanism. Each 3 × 3 tunable Nolen matrix can achieve a full 360° range of progressive phase delay by exciting all three input ports, and nine individual radiation beams can be generated and continuously steered on azimuth and elevation planes by stacking up three tunable Nolen matrix in horizontal and three in vertical to maximize signal-to-noise ratio (SNR) in the corresponding spatial directions. To validate the proposed design, the simulations have been conducted on the circuit network and assessed in a fading channel environment. The simulation results agree well with the theoretical analysis, which demonstrates the capability of the proposed 2D Nolen beamforming phased array to realize high channel capacity in MIMO-enabled IoT communications. 
    more » « less