Most of the dual nano drug delivery systems fail to enter malignant brain tumors due to a lack of proper targeting systems and the size increase of the nanoparticles after drug conjugation. Therefore, a triple conjugated system was developed with carbon dots (C-dots), which have an average particle size of 1.5–1.7 nm. C-dots were conjugated with transferrin (the targeted ligand) and two anti-cancer drugs, epirubicin and temozolomide, to build the triple conjugated system in which the average particle size was increased only up to 3.5 nm. In vitro studies were performed with glioblastoma brain tumor cell lines SJGBM2, CHLA266, CHLA200 (pediatric) and U87 (adult). The efficacy of the triple conjugated system (dual drug conjugation along with transferrin) was compared to those of dual conjugated systems (single drug conjugation along with transferrin), non-transferrin C-dots–drugs, and free drug combinations. Transferrin conjugated samples displayed the lowest cell viability even at a lower concentration. Among the transferrin conjugated samples, the triple conjugated system (C-dots-trans-temo-epi (C-DT)) was more strongly cytotoxic to brain tumor cell lines than dual conjugated systems (C-dots-trans-temo (C-TT) and C-dots-trans-epi (C-ET)). C-DT increased the cytotoxicity to 86% in SJGBM2 at 0.01 μM while C-ET and C-TT reduced it only to 33 and 8%, respectively. Not only did triple conjugated C-DT increase the cytotoxicity, but also the two-drug combination in C-DT displayed a synergistic effect.
more »
« less
pH and redox triggered doxorubicin release from covalently linked carbon dots conjugates
Tumor microenvironment responsive drug delivery systems are potential approaches to reduce the acute toxicity caused by high-dose cancer chemotherapy. Notwithstanding the conventional nano-drug delivery systems, the redox and pH stimuli drug delivery systems are currently gaining attention. Therefore, the current study was designed to compare three different covalent carbon dots (C-dots) systems based on doxorubicin (dox) release profiles and cancer cell viability efficacy under acidic and physiological conditions. The C-dots nanosystems that were examined in this study are directly conjugated (C-dots-dox), pH triggered (C-dots-HBA-dox), and the redox stimuli (C-dots-S–S-dox) conjugates. The drug loading content (DLC%) of the C-dots-S–S-dox, C-dots-HBA-dox, and C-dots-dox was 34.2 ± 0.4, 60.0 ± 0.3, and 70.0 ± 0.2%, respectively, that examined by UV-vis spectral analysis. The dox release paradigms were emphasized that all three conjugates were promisingly released the dox from C-dots faster in acidic pH than in physiological pH. The displayed highest dox released percentage in the acidic medium was 74.6 ± 0.8% obtained by the pH stimuli, C-dots-HBA-dox conjugate. When introducing the redox inducer, dithiothreitol (DTT), preferentially, the redox stimuli C-dot-S–S-dox conjugate demonstrated a faster dox release at acidic pH than in the pH 7.4. The SJGBM2 cell viability experiments revealed that the pH stimuli, C-dots-HBA-dox conjugate, displayed a significant cell viability drop in the artificially acidified pH 6.4 medium. However, in the physiological pH, the redox stimuli, C-dots-S–S-dox conjugate, was promising over the pH stimuli C-dots-HBA-dox, exhibiting cell viability of 60%, though its’ efficacy dropped slightly in the artificially acidified pH 6.4 medium. Moreover, the current study illustrates the stimuli conjugates’ remarkable efficacy on sustain drug release than direct amide linkage.
more »
« less
- PAR ID:
- 10222676
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 13
- Issue:
- 10
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 5507 to 5518
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Non‐spherical stimuli‐responsive polymeric particles have shown critical importance in therapeutic delivery. Herein, pH‐responsive poly(methacrylic acid) (PMAA) cubic hydrogel microparticles are synthesized by crosslinking PMAA layers within PMAA/poly(N‐vinylpyrrolidone) hydrogen‐bonded multilayers templated on porous inorganic microparticles. This study investigates the effects of template porosity and surface morphology on the PMAA multilayer hydrogel microcube properties. It is found that the hydrogel structure depends on the template's calcination time and temperature. The pH‐triggered PMAA hydrogel cube swelling depends on the hydrogel's internal architecture, either hollow capsule‐like or non‐hollow continuous hydrogels. The loading efficiency of the doxorubicin (DOX) drug inside the microcubes is analyzed by high‐performance liquid chromatography (HPLC), and shows the dependenceof the drug uptake on the network structure and morphology controlled by the template porosity. Varying the template calcination from low (300 °C) to high (1000 °C) temperature results in a 2.5‐fold greater DOX encapsulation by the hydrogel cubes. The effects of hydrogel surface charge on the DOX loading and release are also studied using zeta‐potential measurements. This work provides insight into the effect of structural composition, network morphology, and pH‐induced swelling of the cubical hydrogels and may advance the development of stimuli‐responsive vehicles for targeted anticancer drug delivery.more » « less
-
In this work, we utilized a biomimetic approach for targeting KATO (III) tumor cells and 3D tumoroids. Specifically, the binding interactions of the bioactive short peptide sequences ACSAG (A-pep) and LPHVLTPEAGAT (L-pep) with the fibroblast growth factor receptor (FGFR2) kinase domain was investigated for the first time. Both peptides have been shown to be derived from natural resources previously. We then created a new fusion trimer peptide ACSAG-LPHVLTPEAGAT-GASCA (Trimer-pep) and investigated its binding interactions with the FGFR2 kinase domain in order to target the fibroblast growth factor receptor 2 (FGFR2), which is many overexpressed in tumor cells. Molecular docking and molecular dynamics simulation studies revealed critical interactions with the activation loop, hinge and glycine-rich loop regions of the FGFR2 kinase domain. To develop these peptides for drug delivery, DOX (Doxorubicin) conjugates of the peptides were created. Furthermore, the binding of the peptides with the kinase domain was further confirmed through surface plasmon resonance studies. Cell studies with gastric cancer cells (KATO III) revealed that the conjugates and the peptides induced higher cytotoxicity in the tumor cells compared to normal cells. Following confirmation of cytotoxicity against tumor cells, the ability of the conjugates and the peptides to penetrate 3D spheroids was investigated by evaluating their permeation in co-cultured spheroids grown with KATO (III) and colon tumor-associated fibroblasts (CAFs). Results demonstrated that Trimer-pep conjugated with DOX showed the highest permeation, while the ACSAG conjugate also demonstrated reasonable permeation of the drug. These results indicate that these peptides may be further explored and potentially utilized to create drug conjugates for targeting tumor cells expressing FGFR2 for developing therapeutics.more » « less
-
Nanomaterials that respond to intracellular signals, such as pH, have potential for many biomedical applications, such as drug delivery, because the assembly/disassembly process can be tailored to respond to a stimulus characteristic of a specific subcellular location. In this work, two rhodamine-peptides that form stable nanotubes at physiological pH but dissociate into highly fluorescent monomers within the acidified interior of endosomal/lysosomal cellular compartments has been developed. The rhodamine dipeptide conjugates, NH2-KK(RhB)-NH2 (RhB-KK) and NH2-EK(RhB)-NH2 (RhB-KE) with rhodamine B chromophores appended at the ε-amino position of a lysine residue, were shown to assemble into well-defined nanotubes at pH values above ~4-5 and to dissociate into a fluorescent monomer state at lower pH values. The pH-dependence of the assembly process was investigated using CD and fluorescence spectroscopy along with TEM, AFM and confocal imaging. Although the ring opening/closing transition of the rhodamine chromophore took place at pH 4.1 for both peptides, the onset of assembly began at pH 4.6 for RhB-KE and at a comparatively more basic pH (5.8) for RhB-KK. Accordingly, the rhodamine-peptides interconverted between three, pH-dependent states: an open-ring, monomeric state (max 580 nm, 𝜆ex 550 nm) at pH values at or below ~4.6; a closed-ring, nanotube form that exhibits AIEE (max 460 nm, 𝜆ex = 330 nm) at higher pH values and a closed-ring, non-emissive monomeric state that emerged below the CMC. The pH-responsive features of the peptides were evaluated by live-cell imaging in three cancer cell lines using confocal laser scanning microscopy (CLSM). Visualizing the cells after incubation with either RhB-KE or RhB-KK produced CLSM images with a punctate appearance in the Texas Red channel that colocalized with the lysosomes. These experiments indicating that the nanotubes were rapidly trafficked into the acidic lysosomal compartments within the cells, which induced dissociation into a monomeric, open state. Uptake inhibition studies suggested that cellular uptake was mediated by either or both caveolae- and clathrin-mediated endocytosis, depending on the cell line studied.more » « less
-
Smart, multi-stimuli-responsive nanogels that possess dynamic covalent bonds (DCBs) exhibit reversibility under equilibrium conditions allowing for controlled disassembly and release of cargo. These nanomaterials have innumerable applications in areas including drug delivery, sensors, soft actuators, smart surfaces, and environmental remediation. In this work, we implement one-pot, photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA), mediated by UV light (λ = 365 nm) and parts per million (ppm) levels (ca. <20 ppm) of a copper(II) bromide catalyst, to fabricate dual crosslinked, polymeric nanogels with tunable orthogonal reversible covalent (TORC-NGs) core-crosslinks (CCLs). These TORC-NGs were crosslinked efficiently via coumarin photodimerization which occured simultaneously during polymerization using coumarin-functionalized methacrylate crosslinkers (CouMA). At the same time, crosslinking of nanocarriers with N,N-cystamine bismethacrylamide (CBMA) introduced orthogonal, redox-responsive, disulfide CCLs. Furthermore, incorporation of poly(glycidyl methacrylate) (PGMA) core-forming segments provided a simple handle for switchable solubility through acid-catalyzed ring-opening hydrolysis of pendant epoxide groups. In this way, the kinetics of release were tailored by the pH of the surrounding media. Thus, these TORC-NG systems showed coupled pH-, redox- and photo-responsive controlled release and disassembly behavior with full release of cargo only observed in the right sequence of stimuli and only when all three are utilized. The multi-stimuli-responsive nature of these TORC-NGs was successfully utilized herein for the controlled encapsulation and on-demand AND-gate release of hydrophobic Nile Red fluorescent reporters used as drug simulants. Various TORC-NG morphologies were synthesized in this report including nanosphere, worm-like and tubesome NGs showing variable release characteristics.more » « less