skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochemically Produced pH Change Triggering Doxorubicin Release from Cystamine Cross‐Linked Microgels Covalently Immobilized on the Gold Interface
Herein, the usage of polyacrylic acid (AA) based and N,N′‐bis(acryloyl)cystamine (BAC) cross‐linked microgel (AA‐BAC) as a doxorubicin (DOX) carrier and stimuli‐responsive material for the controllable drug release is described. The carboxylic groups of AA provide a pH‐responsive and DOX‐holding ability of the polymer matrix, while sulfur groups of BAC provide a covalent immobilization of the AA‐BAC microgel onto the gold electrode surface. The microgel is responsive to electrochemically generated pH decrease due to ascorbate oxidation. As a result of the local pH drop on the electrode interface electrostatic attraction between the carrier and the positively charged DOX diminishes, which together with the shrinkage of the matrix results in the controlled release of DOX from the microgel. The electrodes modified by microgel based on N,N′‐methylene‐bis‐acrylamide (BIS) as a crosslinker are used as a control. However, AA‐BIS microgel does not contain sulfur groups and it can only be not explicitly adsorbed on the gold electrode while the efficacy of this modification is significantly worse compared to covalent immobilization of AA‐BAC via sulfur groups of BAC. Thus, electrode surface area covered by adsorbed (AA‐BIS)‐DOX microgel is approximately estimated as 34% compared to 90% for covalently immobilized (AA‐BAC)‐DOX microgel.  more » « less
Award ID(s):
2422672
PAR ID:
10642363
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemElectroChem
Volume:
12
Issue:
15
ISSN:
2196-0216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tumor microenvironment responsive drug delivery systems are potential approaches to reduce the acute toxicity caused by high-dose cancer chemotherapy. Notwithstanding the conventional nano-drug delivery systems, the redox and pH stimuli drug delivery systems are currently gaining attention. Therefore, the current study was designed to compare three different covalent carbon dots (C-dots) systems based on doxorubicin (dox) release profiles and cancer cell viability efficacy under acidic and physiological conditions. The C-dots nanosystems that were examined in this study are directly conjugated (C-dots-dox), pH triggered (C-dots-HBA-dox), and the redox stimuli (C-dots-S–S-dox) conjugates. The drug loading content (DLC%) of the C-dots-S–S-dox, C-dots-HBA-dox, and C-dots-dox was 34.2 ± 0.4, 60.0 ± 0.3, and 70.0 ± 0.2%, respectively, that examined by UV-vis spectral analysis. The dox release paradigms were emphasized that all three conjugates were promisingly released the dox from C-dots faster in acidic pH than in physiological pH. The displayed highest dox released percentage in the acidic medium was 74.6 ± 0.8% obtained by the pH stimuli, C-dots-HBA-dox conjugate. When introducing the redox inducer, dithiothreitol (DTT), preferentially, the redox stimuli C-dot-S–S-dox conjugate demonstrated a faster dox release at acidic pH than in the pH 7.4. The SJGBM2 cell viability experiments revealed that the pH stimuli, C-dots-HBA-dox conjugate, displayed a significant cell viability drop in the artificially acidified pH 6.4 medium. However, in the physiological pH, the redox stimuli, C-dots-S–S-dox conjugate, was promising over the pH stimuli C-dots-HBA-dox, exhibiting cell viability of 60%, though its’ efficacy dropped slightly in the artificially acidified pH 6.4 medium. Moreover, the current study illustrates the stimuli conjugates’ remarkable efficacy on sustain drug release than direct amide linkage. 
    more » « less
  2. Abstract Non‐spherical stimuli‐responsive polymeric particles have shown critical importance in therapeutic delivery. Herein, pH‐responsive poly(methacrylic acid) (PMAA) cubic hydrogel microparticles are synthesized by crosslinking PMAA layers within PMAA/poly(N‐vinylpyrrolidone) hydrogen‐bonded multilayers templated on porous inorganic microparticles. This study investigates the effects of template porosity and surface morphology on the PMAA multilayer hydrogel microcube properties. It is found that the hydrogel structure depends on the template's calcination time and temperature. The pH‐triggered PMAA hydrogel cube swelling depends on the hydrogel's internal architecture, either hollow capsule‐like or non‐hollow continuous hydrogels. The loading efficiency of the doxorubicin (DOX) drug inside the microcubes is analyzed by high‐performance liquid chromatography (HPLC), and shows the dependenceof the drug uptake on the network structure and morphology controlled by the template porosity. Varying the template calcination from low (300 °C) to high (1000 °C) temperature results in a 2.5‐fold greater DOX encapsulation by the hydrogel cubes. The effects of hydrogel surface charge on the DOX loading and release are also studied using zeta‐potential measurements. This work provides insight into the effect of structural composition, network morphology, and pH‐induced swelling of the cubical hydrogels and may advance the development of stimuli‐responsive vehicles for targeted anticancer drug delivery. 
    more » « less
  3. Smart, multi-stimuli-responsive nanogels that possess dynamic covalent bonds (DCBs) exhibit reversibility under equilibrium conditions allowing for controlled disassembly and release of cargo. These nanomaterials have innumerable applications in areas including drug delivery, sensors, soft actuators, smart surfaces, and environmental remediation. In this work, we implement one-pot, photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA), mediated by UV light (λ = 365 nm) and parts per million (ppm) levels (ca. <20 ppm) of a copper(II) bromide catalyst, to fabricate dual crosslinked, polymeric nanogels with tunable orthogonal reversible covalent (TORC-NGs) core-crosslinks (CCLs). These TORC-NGs were crosslinked efficiently via coumarin photodimerization which occured simultaneously during polymerization using coumarin-functionalized methacrylate crosslinkers (CouMA). At the same time, crosslinking of nanocarriers with N,N-cystamine bismethacrylamide (CBMA) introduced orthogonal, redox-responsive, disulfide CCLs. Furthermore, incorporation of poly(glycidyl methacrylate) (PGMA) core-forming segments provided a simple handle for switchable solubility through acid-catalyzed ring-opening hydrolysis of pendant epoxide groups. In this way, the kinetics of release were tailored by the pH of the surrounding media. Thus, these TORC-NG systems showed coupled pH-, redox- and photo-responsive controlled release and disassembly behavior with full release of cargo only observed in the right sequence of stimuli and only when all three are utilized. The multi-stimuli-responsive nature of these TORC-NGs was successfully utilized herein for the controlled encapsulation and on-demand AND-gate release of hydrophobic Nile Red fluorescent reporters used as drug simulants. Various TORC-NG morphologies were synthesized in this report including nanosphere, worm-like and tubesome NGs showing variable release characteristics. 
    more » « less
  4. The molecular catalyst diacetyl-bis( N -4-methyl-3-thiosemi-carbazonato)nickel( ii ) (NiATSM) was integrated with Si for light-driven hydrogen evolution from water. Compared to an equivalent loading of Ni metal, the NiATSM/p-Si electrode performed better. Durability of the surface-bound catalyst under operation in acid was achieved without covalent attachment by using Nafion binding. 
    more » « less
  5. ABSTRACT The articular cartilage extracellular matrix (ECM) is a complex network of biomolecules that includes fibronectin (FN). FN acts as an extracellular glue, controlling the assembly of other macromolecular constituents to the ECM. However, how FN participates in the binding and retention of synovial fluid components, the natural lubricant of articulated joints, to form a wear-protecting and lubricating film has not been established. This study reports on the role of FN and its molecular conformation in mediating macromolecular assembly of synovial fluid ad-layers. FN films as precursor films on functionalized surfaces, a model of FN’s articular cartilage surface, adsorbed and retained different amounts of synovial fluid (SF). FN conformational changes were induced by depositing FN at pH 7 (extended state) or at pH 4 (unfolded state) on self-assembled monolayers on gold-coated quartz crystals, followed by adsorption of diluted SF (25%) onto FN precursor films. Mass density, thin film compliance, surface morphologies, and adsorbed FN films’ secondary and tertiary structures reveal pH-induced differences. FN films deposited at pH 4 were thicker, more rigid, showed a more homogeneous morphology, and had alteredα-helix andβ-sheet content, compared to FN films deposited at pH 7. FN precursor films deposited at pH 7 adsorbed and retained more synovial fluid than those at pH 4, revealing the importance of FN conformation at the articular cartilage surface to bind and maintain a thin lubricating and wear protective layer of synovial fluid constituents. This knowledge will enable a better understanding of the molecular regulation of articular cartilage-SF interface homeostasis and joint pathophysiology and identify molecular interactions and synergies between the articular cartilage ECM and SF to reveal the complexity of joint biotribology. 
    more » « less