skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Prediction‐Traversal Approach for Compressing Scientific Data on Unstructured Meshes with Bounded Error
We explore an error‐bounded lossy compression approach for reducing scientific data associated with 2D/3D unstructured meshes. While existing lossy compressors offer a high compression ratio with bounded error for regular grid data, methodologies tailored for unstructured mesh data are lacking; for example, one can compress nodal data as 1D arrays, neglecting the spatial coherency of the mesh nodes. Inspired by the SZ compressor, which predicts and quantizes values in a multidimensional array, we dynamically reorganize nodal data into sequences. Each sequence starts with a seed cell; based on a predefined traversal order, the next cell is added to the sequence if the current cell can predict and quantize the nodal data in the next cell with the given error bound. As a result, one can efficiently compress the quantized nodal data in each sequence until all mesh nodes are traversed. This paper also introduces a suite of novel error metrics, namely continuous mean squared error (CMSE) and continuous peak signal‐to‐noise ratio (CPSNR), to assess compression results for unstructured mesh data. The continuous error metrics are defined by integrating the error function on all cells, providing objective statistics across nonuniformly distributed nodes/cells in the mesh. We evaluate our methods with several scientific simulations ranging from ocean‐climate models and computational fluid dynamics simulations with both traditional and continuous error metrics. We demonstrated superior compression ratios and quality than existing lossy compressors.  more » « less
Award ID(s):
2313122 2330367 2313123
PAR ID:
10536670
Author(s) / Creator(s):
; ;
Publisher / Repository:
EuroGraphics
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
43
Issue:
3
ISSN:
0167-7055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this work is to develop error-bounded lossy compression methods to preserve topological features in 2D and 3D vector fields. Specifically, we explore the preservation of critical points in piecewise linear and bilinear vector fields. We define the preservation of critical points as, without any false positive, false negative, or false type in the decompressed data, (1) keeping each critical point in its original cell and (2) retaining the type of each critical point (e.g., saddle and attracting node). The key to our method is to adapt a vertex-wise error bound for each grid point and to compress input data together with the error bound field using a modified lossy compressor. Our compression algorithm can be also embarrassingly parallelized for large data handling and in situ processing. We benchmark our method by comparing it with existing lossy compressors in terms of false positive/negative/type rates, compression ratio, and various vector field visualizations with several scientific applications. 
    more » « less
  2. With ever-increasing execution scale of the high performance computing (HPC) applications, vast amount of data are being produced by scientific research every day. Error-bounded lossy compression has been considered a very promising solution to address the big-data issue for scientific applications, because it can significantly reduce the data volume with low time cost meanwhile allowing users to control the compression errors with a specified error bound. The existing error-bounded lossy compressors, however, are all developed based on inflexible designs or compression pipelines, which cannot adapt to diverse compression quality requirements/metrics favored by different application users. In this paper, we propose a novel dynamic quality metric oriented error-bounded lossy compression framework, namely QoZ. The detailed contribution is three fold. (1) We design a novel highly-parameterized multi-level interpolation-based data predictor, which can significantly improve the overall compression quality with the same compressed size. (2) We design the error bounded lossy compression framework QoZ based on the adaptive predictor, which can auto-tune the critical parameters and optimize the compression result according to user-specified quality metrics during online compression. (3) We evaluate QoZ carefully by comparing its compression quality with multiple state-of-the-arts on various real-world scientific application datasets. Experiments show that, compared with the second best lossy compressor, QoZ can achieve up to 70% compression ratio improvement under the same error bound, up to 150% compression ratio improvement under the same PSNR, or up to 270% compression ratio improvement under the same SSIM. 
    more » « less
  3. Error-bounded lossy compression has been identified as a promising solution for significantly reducing scientific data volumes upon users' requirements on data distortion. For the existing scientific error-bounded lossy compressors, some of them (such as SPERR and FAZ) can reach fairly high compression ratios and some others (such as SZx, SZ, and ZFP) feature high compression speeds, but they rarely exhibit both high ratio and high speed meanwhile. In this paper, we propose HPEZ with newly-designed interpolations and quality-metric-driven auto-tuning, which features significantly improved compression quality upon the existing high-performance compressors, meanwhile being exceedingly faster than high-ratio compressors. The key contributions lie as follows: (1) We develop a series of advanced techniques such as interpolation re-ordering, multi-dimensional interpolation, and natural cubic splines to significantly improve compression qualities with interpolation-based data prediction. (2) The auto-tuning module in HPEZ has been carefully designed with novel strategies, including but not limited to block-wise interpolation tuning, dynamic dimension freezing, and Lorenzo tuning. (3) We thoroughly evaluate HPEZ compared with many other compressors on six real-world scientific datasets. Experiments show that HPEZ outperforms other high-performance error-bounded lossy compressors in compression ratio by up to 140% under the same error bound, and by up to 360% under the same PSNR. In parallel data transfer experiments on the distributed database, HPEZ achieves a significant performance gain with up to 40% time cost reduction over the second-best compressor. 
    more » « less
  4. With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world scientific floating-point datasets from different domains. Experiments show that FRaZ effectively identifies the optimum error setting in the entire error setting space of any given lossy compressor. While fixed-ratio lossy compression is slower than fixed-error compression, it provides an important new lossy compression technique for users of very large scientific floating-point datasets. 
    more » « less
  5. null (Ed.)
    With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance 
    more » « less