A loss function measures the discrepancy between the true values (observations) and their estimated fits, for a given instance of data. A loss function is said to be proper (unbiased, Fisher consistent) if the fits are defined over a unit simplex, and the minimizer of the expected loss is the true underlying probability of the data. Typical examples are the zero-one loss, the quadratic loss and the Bernoulli log-likelihood loss (log-loss). In this work we show that for binary classification problems, the divergence associated with smooth, proper and convex loss functions is bounded from above by the Kullback-Leibler (KL) divergence, up to a multiplicative normalization constant. It implies that by minimizing the log-loss (associated with the KL divergence), we minimize an upper bound to any choice of loss functions from this set. This property justifies the broad use of log-loss in regression, decision trees, deep neural networks and many other applications. In addition, we show that the KL divergence bounds from above any separable Bregman divergence that is convex in its second argument (up to a multiplicative normalization constant). This result introduces a new set of divergence inequalities, similar to the well-known Pinsker inequality.
more »
« less
Beta Diffusion
We introduce beta diffusion, a novel generative modeling method that integrates demasking and denoising to generate data within bounded ranges. Using scaled and shifted beta distributions, beta diffusion utilizes multiplicative transitions over time to create both forward and reverse diffusion processes, maintaining beta distributions in both the forward marginals and the reverse conditionals, given the data at any point in time. Unlike traditional diffusion-based generative models relying on additive Gaussian noise and reweighted evidence lower bounds (ELBOs), beta diffusion is multiplicative and optimized with KL-divergence upper bounds (KLUBs) derived from the convexity of the KL divergence. We demonstrate that the proposed KLUBs are more effective for optimizing beta diffusion compared to negative ELBOs, which can also be derived as the KLUBs of the same KL divergence with its two arguments swapped. The loss function of beta diffusion, expressed in terms of Bregman divergence, further supports the efficacy of KLUBs for optimization. Experimental results on both synthetic data and natural images demonstrate the unique capabilities of beta diffusion in generative modeling of range-bounded data and validate the effectiveness of KLUBs in optimizing diffusion models, thereby making them valuable additions to the family of diffusion-based generative models and the optimization techniques used to train them.
more »
« less
- Award ID(s):
- 2212418
- PAR ID:
- 10536741
- Publisher / Repository:
- Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.S.; Wortman Vaughan, J. (Ed.)We develop nested variational inference (NVI), a family of methods that learn proposals for nested importance samplers by minimizing an forward or reverse KL divergence at each level of nesting. NVI is applicable to many commonly-used importance sampling strategies and provides a mechanism for learning intermediate densities, which can serve as heuristics to guide the sampler. Our experiments apply NVI to (a) sample from a multimodal distribution using a learned annealing path (b) learn heuristics that approximate the likelihood of future observations in a hidden Markov model and (c) to perform amortized inference in hierarchical deep generative models. We observe that optimizing nested objectives leads to improved sample quality in terms of log average weight and effective sample size.more » « less
-
Diffusion-based generative models (DBGMs) perturb data to a target noise distribution and reverse this process to generate samples. The choice of noising process, or inference diffusion process, affects both likelihoods and sample quality. For example, extending the inference process with auxiliary variables leads to improved sample quality. While there are many such multivariate diffusions to explore, each new one requires significant model-specific analysis, hindering rapid prototyping and evaluation. In this work, we study Multivariate Diffusion Models (MDMs). For any number of auxiliary variables, we provide a recipe for maximizing a lower-bound on the MDMs likelihood without requiring any model-specific analysis. We then demonstrate how to parameterize the diffusion for a specified target noise distribution; these two points together enable optimizing the inference diffusion process. Optimizing the diffusion expands easy experimentation from just a few well-known processes to an automatic search over all linear diffusions. To demonstrate these ideas, we introduce two new specific diffusions as well as learn a diffusion process on the MNIST, CIFAR10, and ImageNet32 datasets. We show learned MDMs match or surpass bits-per-dims (BPDs) relative to fixed choices of diffusions for a given dataset and model architecture.more » « less
-
Generative artificial intelligence has made significant strides, producing text indistinguishable from human prose and remarkably photorealistic images. Automatically measuring how close the generated data distribution is to the target distribution is central to diagnosing existing models and developing better ones. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore three approaches to statistically estimate these scores: vector quantization, non-parametric estimation, and classifier-based estimation. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of f -divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics. In conclusion, we present practical recommendations for using MAUVE effectively with language and image modalities.more » « less
-
We introduce marginalization models (MAMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling by explicitly modeling all induced marginal distributions. Marginalization models enable fast approximation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of arbitrary marginal inference models, such as any-order autoregressive models. MAMs also address the scalability bottleneck encountered in training any-order generative models for high-dimensional problems under the context of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized log-probability function such as energy or reward function). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including images, text, physical systems, and molecules, for maximum likelihood and energy-based training settings. MAMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MAMs enable any-order generative modeling of high-dimensional problems beyond the scale of previous methods.more » « less