skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2212418

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available May 1, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. Free, publicly-accessible full text available December 1, 2025
  6. Aligning text-to-image diffusion model (T2I) with preference has been gaining increasing research attention. While prior works exist on directly optimizing T2I by preference data, these methods are developed under the bandit assumption of a latent reward on the entire diffusion reverse chain, while ignoring the sequential nature of the generation process. From literature, this may harm the efficacy and efficiency of alignment. In this paper, we take on a finer dense reward perspective and derive a tractable alignment objective that emphasizes the initial steps of the T2I reverse chain. In particular, we introduce temporal discounting into the DPO-style explicit-reward-free loss, to break the temporal symmetry therein and suit the T2I generation hierarchy. In experiments on single and multiple prompt generation, our method is competitive with strong relevant baselines, both quantitatively and qualitatively. Further studies are conducted to illustrate the insight of our approach. 
    more » « less
  7. Diffusion models excel at generating photo-realistic images but come with significant computational costs in both training and sampling. While various techniques address these computational challenges, a less-explored issue is designing an efficient and adaptable network backbone for iterative refinement. Current options like U-Net and Vision Transformer often rely on resource-intensive deep networks and lack the flexibility needed for generating images at variable resolutions or with a smaller network than used in training. This study introduces LEGO bricks, which seamlessly integrate Local-feature Enrichment and Global-content Orchestration. These bricks can be stacked to create a test-time reconfigurable diffusion backbone, allowing selective skipping of bricks to reduce sampling costs and generate higher-resolution images than the training data. LEGO bricks enrich local regions with an MLP and transform them using a Transformer block while maintaining a consistent full-resolution image across all bricks. Experimental results demonstrate that LEGO bricks enhance training efficiency, expedite convergence, and facilitate variable-resolution image generation while maintaining strong generative performance. Moreover, LEGO significantly reduces sampling time compared to other methods, establishing it as a valuable enhancement for diffusion models. 
    more » « less
  8. We present Prompt Diffusion, a framework for enabling in-context learning in diffusion-based generative models. Given a pair of task-specific example images, such as depth from/to image and scribble from/to image, and a text guidance, our model automatically understands the underlying task and performs the same task on a new query image following the text guidance. To achieve this, we propose a vision-language prompt that can model a wide range of vision-language tasks and a diffusion model that takes it as input. The diffusion model is trained jointly on six different tasks using these prompts. The resulting Prompt Diffusion model becomes the first diffusion-based vision-language foundation model capable of in-context learning. It demonstrates high-quality in-context generation for the trained tasks and effectively generalizes to new, unseen vision tasks using their respective prompts. Our model also shows compelling text-guided image editing results. Our framework aims to facilitate research into in-context learning for computer vision. We share our code and pre-trained models at https://github. com/Zhendong-Wang/Prompt-Diffusion. 
    more » « less
  9. Diffusion models are powerful, but they require a lot of time and data to train. We propose Patch Diffusion, a generic patch-wise training framework, to significantly reduce the training time costs while improving data efficiency, which thus helps democratize diffusion model training to broader users. At the core of our innovations is a new conditional score function at the patch level, where the patch location in the original image is included as additional coordinate channels, while the patch size is randomized and diversified throughout training to encode the cross-region dependency at multiple scales. Sampling with our method is as easy as in the original diffusion model. Through Patch Diffusion, we could achieve ≥2× faster training, while maintaining comparable or better generation quality. Patch Diffusion meanwhile improves the performance of diffusion models trained on relatively small datasets, e.g., as few as 5,000 images to train from scratch. We achieve outstanding FID scores in line with state-of-the-art benchmarks: 1.77 on CelebA-64×64, 1.93 on AFHQv2-Wild-64×64, and 2.72 on ImageNet-256×256. We share our code and pre-trained models in GitHub. 
    more » « less
  10. We introduce beta diffusion, a novel generative modeling method that integrates demasking and denoising to generate data within bounded ranges. Using scaled and shifted beta distributions, beta diffusion utilizes multiplicative transitions over time to create both forward and reverse diffusion processes, maintaining beta distributions in both the forward marginals and the reverse conditionals, given the data at any point in time. Unlike traditional diffusion-based generative models relying on additive Gaussian noise and reweighted evidence lower bounds (ELBOs), beta diffusion is multiplicative and optimized with KL-divergence upper bounds (KLUBs) derived from the convexity of the KL divergence. We demonstrate that the proposed KLUBs are more effective for optimizing beta diffusion compared to negative ELBOs, which can also be derived as the KLUBs of the same KL divergence with its two arguments swapped. The loss function of beta diffusion, expressed in terms of Bregman divergence, further supports the efficacy of KLUBs for optimization. Experimental results on both synthetic data and natural images demonstrate the unique capabilities of beta diffusion in generative modeling of range-bounded data and validate the effectiveness of KLUBs in optimizing diffusion models, thereby making them valuable additions to the family of diffusion-based generative models and the optimization techniques used to train them. 
    more » « less