skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 1, 2025

Title: Conforming and Nonconforming Virtual Element Methods for Signorini Problems
In this paper, we design and analyze the conforming and nonconforming virtual element methods for the Signorini problem. Under some regularity assumptions, we prove optimal order a priori error estimates in the energy norm for both two numerical schemes. Extensive numerical tests are presented, verifying the theory and exploring unknown features.  more » « less
Award ID(s):
1831950
PAR ID:
10536781
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Scientific Computing
Volume:
100
Issue:
1
ISSN:
0885-7474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Reduced order models (ROMs) are computational models whose dimension is significantly lower than those obtained through classical numerical discretizations (e.g., finite element, finite difference, finite volume, or spectral methods). Thus, ROMs have been used to accelerate numerical simulations of many query problems, e.g., uncertainty quantification, control, and shape optimization. Projection-based ROMs have been particularly successful in the numerical simulation of fluid flows. In this brief survey, we summarize some recent ROM developments for the quasi-geostrophic equations (QGE) (also known as the barotropic vorticity equations), which are a simplified model for geophysical flows in which rotation plays a central role, such as wind-driven ocean circulation in mid-latitude ocean basins. Since the QGE represent a practical compromise between efficient numerical simulations of ocean flows and accurate representations of large scale ocean dynamics, these equations have often been used in the testing of new numerical methods for ocean flows. ROMs have also been tested on the QGE for various settings in order to understand their potential in efficient numerical simulations of ocean flows. In this paper, we survey the ROMs developed for the QGE in order to understand their potential in efficient numerical simulations of more complex ocean flows: We explain how classical numerical methods for the QGE are used to generate the ROM basis functions, we outline the main steps in the construction of projection-based ROMs (with a particular focus on the under-resolved regime, when the closure problem needs to be addressed), we illustrate the ROMs in the numerical simulation of the QGE for various settings, and we present several potential future research avenues in the ROM exploration of the QGE and more complex models of geophysical flows. 
    more » « less
  2. In this paper, we consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented. 
    more » « less
  3. Abstract

    In this paper, we establish the fully decoupled numerical methods by utilizing scalar auxiliary variable approach for solving Cahn–Hilliard–Darcy system. We exploit the operator splitting technique to decouple the coupled system and Galerkin finite element method in space to construct the fully discrete formulation. The developed numerical methods have the features of second order accuracy, totally decoupling, linearization, and unconditional energy stability. The unconditionally stability of the two proposed decoupled numerical schemes are rigorously proved. Abundant numerical results are reported to verify the accuracy and effectiveness of proposed numerical methods.

     
    more » « less
  4. Abstract

    Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics, enable direct assessment of the numerical accuracy, and support the reproducibility of results. In this article, we use the open-sourceSpECTREnumerical relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate thatSpECTREachieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors.

     
    more » « less
  5. We consider the numerical analysis of the inchworm Monte Carlo method, which is proposed recently to tackle the numerical sign problem for open quantum systems. We focus on the growth of the numerical error with respect to the simulation time, for which the inchworm Monte Carlo method shows a flatter curve than the direct application of Monte Carlo method to the classical Dyson series. To better understand the underlying mechanism of the inchworm Monte Carlo method, we distinguish two types of exponential error growth, which are known as the numerical sign problem and the error amplification. The former is due to the fast growth of variance in the stochastic method, which can be observed from the Dyson series, and the latter comes from the evolution of the numerical solution. Our analysis demonstrates that the technique of partial resummation can be considered as a tool to balance these two types of error, and the inchworm Monte Carlo method is a successful case where the numerical sign problem is effectively suppressed by such means. We first demonstrate our idea in the context of ordinary differential equations, and then provide complete analysis for the inchworm Monte Carlo method. Several numerical experiments are carried out to verify our theoretical results. 
    more » « less