Trends in surface air temperature (SAT) are a common metric for global warming. Using observations and observationally driven models, we show that a more comprehensive metric for global warming and weather extremes is the trend in surface equivalent potential temperature (Thetae_sfc) since it also accounts for the increase in atmospheric humidity and latent energy. From 1980 to 2019, while SAT increased by 0.79 ° C , Thetae_sfc increased by 1.48 ° C globally and as much as 4 ° C in the tropics. The increase in water vapor is responsible for the factor of 2 difference between SAT and Thetae_sfc trends. Thetae_sfc increased more uniformly (than SAT) between the midlatitudes of the southern hemisphere and the northern hemisphere, revealing the global nature of the heating added by greenhouse gases (GHGs). Trends in heat extremes and extreme precipitation are correlated strongly with the global/tropical trends in Thetae_sfc. The tropical amplification of Thetae_sfc is as large as the arctic amplification of SAT, accounting for the observed global positive trends in deep convection and a 20% increase in heat extremes. With unchecked GHG emissions, while SAT warming can reach 4.8 ° C by 2100, the global mean Thetae_sfc can increase by as much as 12 ° C , with corresponding increases of 12 ° C (median) to 24 ° C (5% of grid points) in land surface temperature extremes, a 14- to 30-fold increase in frequency of heat extremes, a 40% increase in the energy available for tropical deep convection, and an up to 60% increase in extreme precipitation.
more »
« less
Comparing Local Versus Hemispheric Perspectives of Extreme Heat Events
Abstract We compare insights provided by local and large‐scale perspectives of extreme heat events in ERA5 near‐surface temperature data. Heat waves where temperatures exceed four standard deviations about the climatological‐mean are expected less than once a century locally but occur roughly once every 10 days somewhere in the Northern Hemisphere midlatitudes. The high frequency of occurrence indicated by the hemispheric perspective is not well represented by normal statistics because it strongly depends on the shapes of the local temperature distributions. The large effective sample size afforded by the hemispheric perspective provides robust evidence of trends in the frequency of occurrence of extreme heat events integrated over the Northern Hemisphere. It also confirms that trends in heat events summed over the hemisphere can be explained by changes in mean temperature alone.
more »
« less
- Award ID(s):
- 2116186
- PAR ID:
- 10536916
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 24
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. An extreme warming event near the North Pole, with 2 m temperature rising above 0 °C, was observed in late December 2015. This specific event has been attributed to cyclones and their associated moisture intrusions. However, little is known about the characteristics and drivers of similar events in the historical record. Here, using data from European Centre for Medium-Range Weather Forecasts Reanalysis, version 5 (ERA5), we study these winter extreme warming events with 2 m temperature over a grid point above 0 °C over the high Arctic (poleward of 80° N) that occurred during 1980–2021. In ERA5, such wintertime extreme warming events can only be found over the Atlantic sector. They occur rarely over many grid points, with a total absence during some winters. Furthermore, even when occurring, they tend to be short-lived, with the majority of the events lasting for less than a day. By examining their surface energy budget, we found that these events transition with increasing latitude from a regime dominated by turbulent heat flux into the one dominated by downward longwave radiation. Positive sea level pressure anomalies which resemble blocking over northern Eurasia are identified as a key ingredient in driving these events, as they can effectively deflect the eastward propagating cyclones poleward, leading to intense moisture and heat intrusions into the high Arctic. Using an atmospheric river (AR) detection algorithm, the roles of ARs in contributing to the occurrence of these extreme warming events defined at the grid-point scale are explicitly quantified. The importance of ARs in inducing these events increases with latitude. Poleward of about 83° N, 100 % of these events occurred under AR conditions, corroborating that ARs were essential in contributing to the occurrence of these events. Over the past 4 decades, both the frequency, duration, and magnitude of these events have been increasing significantly. As the Arctic continues to warm, these events are likely to increase in both frequency, duration, and magnitude, with great implications for the local sea ice, hydrological cycle, and ecosystem.more » « less
-
Abstract Total poleward atmospheric heat transport (AHT) is similar in both magnitude and latitudinal structure between the Northern and Southern Hemispheres. These similarities occur despite more major mountain ranges in the Northern Hemisphere, which help create substantial stationary eddy AHT that is largely absent in the Southern Hemisphere. However, this hemispheric difference in stationary eddy AHT is compensated by hemispheric differences in other dynamic components of AHT so that total AHT is similar between hemispheres. To understand how AHT compensation occurs, we add midlatitude mountain ranges in two different general circulation models that are otherwise configured as aquaplanets. Even when midlatitude mountains are introduced, total AHT is nearly invariant. We explore the near invariance of total AHT in response to orography through dynamic, energetic, and diffusive perspectives. Dynamically, orographically induced changes to stationary eddy AHT are compensated by changes in both transient eddy and mean meridional circulation AHT. This creates an AHT system with three interconnected components that resist large changes to total AHT. Energetically, the total AHT can only change if the top-of-the-atmosphere net radiation changes at the equator-to-pole scale. Midlatitude orography does not create large-enough changes in the equator-to-pole temperature gradient to alter outgoing longwave radiation enough to substantially change total AHT. In the zonal mean, changes to absorbed shortwave radiation also often compensate for changes in outgoing longwave radiation. Diffusively, the atmosphere smooths anomalies in temperature and humidity created by the addition of midlatitude orography, such that total AHT is relatively invariant. Significance StatementThe purpose of this study is to better understand how orography influences heat transport in the atmosphere. Enhancing our understanding of how atmospheric heat transport works is important, as heat transport helps moderate Earth’s surface temperatures and influences precipitation patterns. We find that the total amount of atmospheric heat transport does not change in the presence of mountains in the midlatitudes. Different pieces of the heat transport change, but they change in compensatory ways, such that the total heat transport remains roughly constant.more » « less
-
Abstract Midlatitude stationary waves are relatively persistent large‐scale longitudinal variations in atmospheric circulation. Although recent case studies have suggested a close connection between stationary waves and extreme weather events, little is known about the global‐scale linkage between stationary waves and wildfire activity, as well as the potential changes in this relationship in a warmer climate. Here, by analyzing the Community Earth System Model version 2 large ensemble, we show that a zonal wavenumber 5–6 stationary wave pattern tends to synchronize wildfire occurrences across the Northern Hemisphere midlatitudes. The alternation of upper‐troposphere ridges and troughs creates a hemispheric‐scale spatial pattern of alternating hot/dry and cold/wet conditions, which increases or decreases wildfire occurrence, respectively. More persistent high‐pressure conditions drastically increase wildfire probabilities. Even though the dynamics of these waves change little in response to anthropogenic global warming, the corresponding midlatitude wildfire variability is projected to intensify due to changes in climate background conditions.more » « less
-
Abstract At most latitudes, the seasonal cycle of zonal‐mean surface air temperature is notably asymmetric: the length of the warming season is not equal to the length of the cooling season. The asymmetry varies spatially, with the cooling season being ∼40 days shorter than the warming season in the subtropics and the warming season being ∼100 days shorter than the cooling season at the poles. Furthermore, the asymmetry differs between the Northern Hemisphere and the Southern Hemisphere. Here, we show that these observed features are broadly captured in a simple model for the evolution of temperature forced by realistic insolation. The model suggests that Earth's orbital eccentricity largely determines the hemispheric contrast, and obliquity broadly dictates the meridional structure. Clouds, atmospheric heat flux convergence, and time‐invariant effective surface heat capacity have minimal impacts on seasonal asymmetry. This simple, first‐order picture has been absent from previous discussions of the surface temperature seasonal cycle.more » « less
An official website of the United States government

