skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Process Parameter Optimization of Directed Energy Deposited QT17‐4+ Steel
Abstract The feasibility of using argon‐atomized QT 17‐4+ stainless steel powder for directed energy deposition (DED) additive manufacturing is studied. The QT 17‐4+ steel is a novel martensitic steel designed based on the compositional modification of the standard 17‐4 precipitation‐hardened (PH) stainless steel. This modification aims to achieve better mechanical properties of as‐deposited components compared to the heat‐treated wrought 17‐4PH steel. In this study, QT 17‐4+ steel powder is used for DED, for the first time. The influence of laser power, laser scan speed, powder feed rate, and hatch overlap on the density is studied. The central composite design is used to determine the experimental matrix of these factors. The response surface methodology is used to obtain the empirical statistical prediction model. Both columnar and equiaxed parent austenite grain structures are observed. X‐ray diffraction analyses reveal a decrease in the percentage of retained austenite from 19% in the powder to 5% after DED. The microhardness of the DED processed sample in the as‐deposited state is slightly higher than that of wrought 17‐4PH steel either solution‐annealed or H900‐aged. A higher 0.2% yield strength, a lower ultimate tensile strength, and lower elongation are observed for the vertically printed test sample, when compared to the horizontal one.  more » « less
Award ID(s):
2105362
PAR ID:
10536971
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley-VCH GmbH, Weinheim
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
9
Issue:
15
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Balancing strength and ductility is crucial for structural materials, yet often presents a paradoxical challenge. This research focuses on crafting a unique bimetallic structure, combining non-magnetic, stainless steel 316L (SS316L) with limited strength but enhanced ductility and magnetic, martensitic 17-4 PH with higher strength but lower ductility. Utilizing a powder-based laser-directed energy deposition (L-DED) system, two vertical bimetallic configurations (SS316L/17-4 PH) and a radial bimetallic structure (SS316L core encased in 17-4 PH) were fabricated. Monolithic SS316L, 17-4 PH, and a 50% SS316L/50% 17-4 PH mixture were printed. The printed samples' phase, microstructure, room temperature mechanical properties, and fracture morphology were examined in as-printed conditions. Bimetallic samples exhibited both phases, with a smooth grain transition at the interface. Radial bimetallic samples demonstrated higher mechanical strength than other compositions, except 17-4 PH. These findings showcase the potential of the L-DED approach for creating functional components with tailored mechanical properties. 
    more » « less
  2. Wire arc additive manufacturing (WAAM) presents a highly promising alternative to conventional subtractive manufacturing methods to produce metallic components, particularly in the aerospace industry, where there is a demand for 17–4 precipitation-hardened (PH) stainless steel structures. This study focuses on investigating the microstructural characteristics, showing microhardness evaluations, and analyzing the tensile properties of the as-printed parts during the 17–4 PH manufacturing process at different locations and directions. The fabrication is carried out using gas metal wire arc additive manufacturing (GM-WAAM). As a result, it was found that the microstructure of the as-deposited part showed a complex configuration consisting of both finely equiaxed and coarsely formed δ-ferrite phases with vermicular and lathy morphologies. These phases were dispersed inside the martensitic matrix, while a small amount of retained austenite was also present. It was observed that the volume fraction of retained austenite (20–5%) and δ-ferrite phases (15.5–2.5%) decreased gradually from the bottom to the top of the as-deposited wall. This reduction in the fractions of these phases resulted in a progressive increase in both hardness (∼37%) and ultimate tensile strength (UTS) along the building direction. This study successfully fabricates a high-strength and ductile 17–4 PH as-printed part using WAAM. The findings provide evidence supporting the feasibility of employing WAAM for producing defect-free, high-strength components on a large scale while maintaining mechanical properties similar or better than wrought alloy 17–4 PH. 
    more » « less
  3. Abstract This study demonstrates the simultaneous achievement of high strength and excellent corrosion resistance in a Ni-free, high N austenitic stainless steel fabricated by laser powder bed fusion (PBF-LB). The formation of a single-phase austenitic structure was confirmed through X-ray diffraction analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic potentiodynamic polarization tests conducted in 0.6 M NaCl solution at room temperature revealed high breakdown potential (1187 ± 31 mVSCE), indicating excellent corrosion resistance for the additively manufactured Ni-free austenitic stainless steel compared to wrought 316L stainless steel. These findings were further supported by immersion tests in FeCl3solution. The additively fabricated alloy’s yield strength and ultimate tensile strength exceeded 800 MPa and 1 GPa, respectively. The results highlight the potential for developing highly corrosion-resistant, high-strength Ni-free austenitic stainless steel by PBF-LB for possible applications for biomedical implants and structures relating to nuclear energy. 
    more » « less
  4. This study investigates the mechanical behavior of additively manufactured (AM) 17-4 PH (AISI 630) stainless steels and compares their behavior to traditionally produced wrought counterparts. The goal of this study is to understand the key parameters influencing AM 17-4 PH steel fatigue life under ULCF conditions and to develop simple predictive models for fatigue-life estimation in AM 17-4 steel components. In this study, both AM and traditionally produced (wrought) material samples are fatigue tested under fully reversed (R = −1) strain controlled (2–4% strain) loading and characterized using micro-hardness, x-ray diffraction, and fractography methods. Results indicate decreased fatigue life for AM specimens as compared to wrought 17-4 PH specimens due to fabrication porosity and un-melted particle defect regions which provide a mechanism for internal fracture initiation. Heat treatment processes performed in this work, to both the AM and wrought specimens, had no observable effect on ULCF behavior. Result comparisons with an existing fatigue prediction model (the Coffin–Manson universal slopes equation) demonstrated consistent over-prediction of fatigue life at applied strain amplitudes greater than 3%, likely due to inherent AM fabrication defects. An alternative empirical ULCF capacity equation is proposed herein to aid future fatigue estimations in AM 17-4 PH stainless steel components. 
    more » « less
  5. Nickel-based alloys, Alloys 625 and 718, are widely used in the aerospace industry due to their excellent corrosion resistance and high strength at elevated temperatures. Recently, these alloys have been utilized to manufacture rocket engine components using additive manufacturing (AM) technologies such as laser powder bed fusion (LPBF) and powder-blown laser-based directed energy deposition (DED). These technologies offer faster and more cost-effective production while enabling the fabrication of near-net-shape parts that are subsequently joined by welding. However, solidification cracking susceptibility varies significantly between AM and conventionally processed materials, and limited weldability characterization has been conducted on AM-fabricated materials. This study assesses the weld solidification cracking susceptibility of Alloys 625 and 718 produced by wrought (mill-rolled), LPBF, and DED using transverse varestraint testing, Scheil-Gulliver simulations, the Crack Susceptibility Index (CSI), and the Flow Resistance Index (FRI). Transverse varestraint testing revealed that AM parts exhibited higher susceptibility due to the presence of larger and elongated grains in the fusion zone, affecting the weld solidification cracking response. In Alloy 625, the LPBF condition exhibited the highest maximum crack distance (MCD) of 2.35 ± 0.16 mm, compared to 1.56 ± 0.06 mm for wrought and 1.72 ± 0.10 mm for DED. Similarly, in Alloy 718, the DED condition showed the highest MCD of 2.93 ± 0.41 mm, while the wrought condition had an MCD of 2.01 ± 0.12 mm, and the LPBF condition reached 3.01 ± 0.33 mm at 5 % strain, without a clearly defined saturation strain. Although wrought materials demonstrated greater resistance to solidification cracking, solidification simulations did not correlate with the experimental testing, as they do not account for microstructural and mechanical factors, relying solely on chemistry. 
    more » « less