skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimized receiver design for entanglement-assisted communication using BPSK
The use of pre-shared entanglement in entanglement-assisted communication offers a superior alternative to classical communication, especially in the photon-starved regime and highly noisy environments. In this paper, we analyze the performance of several low-complexity receivers that use optical parametric amplifiers. The simulations demonstrate that receivers employing an entanglement-assisted scheme with phase-shift-keying modulation can outperform classical capacities. We present a 2x2 optical hybrid receiver for entanglement-assisted communication and show that it has a roughly 10% lower error probability compared to previously proposed optical parametric amplifier-based receivers for more than 10 modes. However, the capacity of the optical parametric amplifier-based receiver exceeds the Holevo capacity and the capacities of the optical phase conjugate receiver and 2x2 optical hybrid receiver in the case of a single mode. The numerical findings indicate that surpassing the Holevo and Homodyne capacities does not require a large number of signal-idler modes. Furthermore, we find that using unequal priors for BPSK provides roughly three times the information rate advantage over equal priors.  more » « less
Award ID(s):
2244365
PAR ID:
10536985
Author(s) / Creator(s):
;
Publisher / Repository:
Optica Publishing Group
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
24
ISSN:
1094-4087
Page Range / eLocation ID:
39765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels (MACs) with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss MAC and solve the one-shot capacity region enabled by an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial. 
    more » « less
  2. Communication is an integral part of human life. Today, optical pulses are the preferred information carriers for long-distance communication. The exponential growth in data leads to a “capacity crunch” in the underlying physical systems. One of the possible methods to deter the exponential growth of physical resources for communication is to use quantum, rather than classical measurement at the receiver. Quantum measurement improves the energy efficiency of optical communication protocols by enabling discrimination of optical coherent states with the discrimination error rate below the shot-noise limit. In this review article, the authors focus on quantum receivers that can be practically implemented at the current state of technology, first and foremost displacement-based receivers. The authors present the experimentalist view on the progress in quantum-enhanced receivers and discuss their potential. 
    more » « less
  3. n/a (Ed.)
    Because noise is inherent to all measurements, optical communication requires error identification and correction to protect and recover user data. Yet, error correction, routinely used in classical receivers, has not been applied to receivers that take advantage of quantum measurement. Here, we show how information uniquely available in a quantum measurement can be employed for efficient error correction. Our quantum-enabled forward error correction protocol operates on quadrature phase shift keying (QPSK) and achieves more than 80 dB error suppression compared to the raw symbol error rate and approximately 40 dB improvement of symbol error rates beyond the QPSK classical limit. With a symbol error rate below 10−9 for just 11 photons per bit, this approach enables reliable use of quantum receivers for ultra-low power optical communications. Limiting optical power improves the information capacity of optical links and enables scalable networks with coexisting quantum and classical channels in the same optical fiber. 
    more » « less
  4. In this paper, we are presenting results that go against the common belief that entanglement is destroyed by the amplification using an EDFA. Here we demonstrate the quantum advantage of entanglement-assisted communication at 10Gb/s, employing LDPC-coded BPSK, over classical laser communication even after the amplification of signal photons is performed by the EDFA in order to improve the reliability of entanglement-assisted (EA) communication operating in turbulent 1.5 km terrestrial FSO channels. To make the EA system more robust against various atmospheric effects such as scattering, absorption, and turbulence effects we perform the optical phase-conjugation on idler photons rather than turbulence-affected signal photons and use adaptive optics to make additional improvements in terms of the bit-error rate. 
    more » « less
  5. We implement the cyclic quantum receiver based on the theoretical proposal of Roy Bondurant and demonstrate experimentally below the shot-noise limit (SNL) discrimination of quadrature phase-shift keying signals (PSK). We also experimentally test the receiver generalized for longer communication alphabet lengths and coherent frequency shift keying (CFSK) encoding. Using off-the-shelf components, we obtain state discrimination error rates that are 3 dB and 4.6 dB below the SNLs of ideal classical receivers for quadrature PSK and CFSK encodings, respectively. The receiver unconditionally surpasses the SNL for M=8 PSK and CFSK. This receiver can be used for the simple and robust practical implementation of quantum-enhanced optical communication. 
    more » « less