skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The contribution of nearshore oceanography to temporal variation in larval dispersal
Abstract Patterns of population connectivity shape ecological and evolutionary phenomena from population persistence to local adaptation and can inform conservation strategy. Connectivity patterns emerge from the interaction of individual behavior with a complex and heterogeneous environment. Despite ample observation that dispersal patterns vary through time, the extent to which variation in the physical environment can explain emergent connectivity variation is not clear. Empirical studies of its contribution promise to illuminate a potential source of variability that shapes the dynamics of natural populations. We leveraged simultaneous direct dispersal observations and oceanographic transport simulations of the clownfishAmphiprion clarkiiin the Camotes Sea, Philippines, to assess the contribution of oceanographic variability to emergent variation in connectivity. We found that time‐varying oceanographic simulations on both annual and monsoonal timescales partly explained the observed dispersal patterns, suggesting that temporal variation in oceanographic transport shapes connectivity variation on these timescales. However, interannual variation in observed mean dispersal distance was nearly 10 times the expected variation from biophysical simulations, revealing that additional biotic and abiotic factors contribute to interannual connectivity variation. Simulated dispersal kernels also predicted a smaller scale of dispersal than the observations, supporting the hypothesis that undocumented abiotic factors and behaviors such as swimming and navigation enhance the probability of successful dispersal away from, as opposed to retention near, natal sites. Our findings highlight the potential for coincident observations and biophysical simulations to test dispersal hypotheses and the influence of temporal variability on metapopulation persistence, local adaptation, and other population processes.  more » « less
Award ID(s):
1426891 1430218 1743711
PAR ID:
10537065
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
105
Issue:
10
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dispersal drives diverse processes from population persistence to community dynamics. However, the amount of temporal variation in dispersal and its consequences for metapopulation dynamics is largely unknown for organisms with environmentally driven dispersal (e.g., many marine larvae, arthropods and plant seeds). Here, we used genetic parentage analysis to detect larval dispersal events in a common coral reef fish,Amphiprion clarkii, along 30 km of coastline consisting of 19 reef patches in Ormoc Bay, Leyte, Philippines. We quantified variation in the dispersal kernel across seven years (2012–2018) and monsoon seasons with 71 parentage assignments from 791 recruits and 1,729 adults. Connectivity patterns differed significantly among years and seasons in the scale and shape but not in the direction of dispersal. This interannual variation in dispersal kernels introduced positive temporal covariance among dispersal routes that theory predicts is likely to reduce stochastic metapopulation growth rates below the growth rates expected from only a single or a time‐averaged connectivity estimate. The extent of variation in mean dispersal distance observed here among years is comparable in magnitude to the differences across reef fish species. Considering dispersal variation will be an important avenue for further metapopulation and metacommunity research across diverse taxa. 
    more » « less
  2. Obtaining dispersal estimates for a species is key to understanding local adaptation and population dynamics and to implementing conservation actions. Genetic isolation-by-distance (IBD) patterns can be used for estimating dispersal, and these patterns are especially useful for marine species in which few other methods are available. In this study, we genotyped coral reef fish (Amphiprion biaculeatus) at 16 microsatellite loci across eight sites across 210 km in the central Philippines to generate fine-scale estimates of dispersal. All sites except for one followed IBD patterns. Using IBD theory, we estimated a larval dispersal kernel spread of 8.9 km (95% confidence interval of 2.3–18.4 km). Genetic distance to the remaining site correlated strongly with the inverse probability of larval dispersal from an oceanographic model. Ocean currents were a better explanation for genetic distance at large spatial extents (sites greater than 150 km apart), while geographic distance remained the best explanation for spatial extents less than 150 km. Our study demonstrates the utility of combining IBD patterns with oceanographic simulations to understand connectivity in marine environments and to guide marine conservation strategies. 
    more » « less
  3. Many marine animals have a biphasic life cycle in which demersal adults spawn pelagic larvae with high dispersal potential. An understanding of the spatial and temporal patterns of larval dispersal is critical for describing connectivity and local retention. Existing tools in oceanography, genetics, and ecology can each reveal only part of the overall pattern of larval dispersal. We combined insights from a coupled physical-biological model, parentage analyses, and field surveys to span larval dispersal pathways, endpoints, and recruitment of the convict surgeonfish Acanthurus triostegus . Our primary study region was the windward coast of O‘ahu, Hawai‘i. A high abundance of juvenile A . triostegus occurred along the windward coast, with the highest abundance inside Kāne‘ohe Bay. The output from our numerical model showed that larval release location accounted for most of the variation in simulated settlement. Seasonal variation in settlement probability was apparent, and patterns observed in model simulations aligned with in situ observations of recruitment. The bay acted as a partial retention zone, with larvae that were released within or entering the bay having a much higher probability of settlement. Genetic parentage analyses aligned with larval transport modeling results, indicating self-recruitment of A . triostegus within the bay as well as recruitment into the bay from sites outside. We conclude that Kāne‘ohe Bay retains reef fish larvae and promotes settlement based on concordant results from numerical models, parentage analyses, and field observations. Such interdisciplinary approaches provide details of larval dispersal and recruitment heretofore only partially revealed. 
    more » « less
  4. Spatial-temporal variation in environmental conditions is ubiquitous in nature. This variation simultaneously impacts survival, reproduction, and movement of individuals and thereby the rate at which metapopulations grow. Using the tools of stochastic demography, the metapopulation growth rate is decomposed into five components corresponding to temporal, spatial, and spatial-temporal variation in fitness and spatial and spatial-temporal covariation in dispersal and fitness. While temporal variation in fitness always reduces the metapopulation growth rate, all other sources of variation can either increase or reduce the metapopulation growth rate. Increases occur either by reducing the impacts of temporal variation or by generating a positive fitness-density covariance where individuals tend to concentrate in higher-quality patches. For example, positive autocorrelations in spatial-temporal variability in fitness generate this positive fitness-density covariance for less dispersive populations but decrease it for highly dispersive populations (e.g., migratory species). Negative autocorrelations in spatial-temporal variability have the opposite effects. Positive covariances between movement and future fitness, on short or long timescales, increase growth rates. These positive covariances can arise in unexpected ways. For example, the win-stay, lose-shift dispersal strategy in negatively autocorrelated environments can generate positive spatial covariances that exceed negative spatial-temporal covariances. This decomposition of the metapopulation growth rate provides a way to quantify the relative importance of fundamental sources of variation for metapopulation persistence. 
    more » « less
  5. When ecological and evolutionary dynamics occur on comparable timescales, persistence of the ensuing eco-evolutionary dynamics requires both ecological and evolutionary stability. This unites key questions in ecology and evolution: How do species coexist, and what maintains genetic variation in a population? In this work, we investigated a host-parasitoid system in which pea aphid hosts rapidly evolve resistance toAphidius erviparasitoids. Field data and mathematical simulations showed that heterogeneity in parasitoid dispersal can generate variation in parasitism-mediated selection on hosts through time and space. Experiments showed how evolutionary trade-offs plus moderate host dispersal across this selection mosaic cause host-parasitoid coexistence and maintenance of genetic variation in host resistance. Our results show how dispersal can stabilize both the ecological and evolutionary components of eco-evolutionary dynamics. 
    more » « less