skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Trace Map on Higher Scissors Congruence Groups
Abstract Cut-and-paste $$K$$-theory has recently emerged as an important variant of higher algebraic $$K$$-theory. However, many of the powerful tools used to study classical higher algebraic $$K$$-theory do not yet have analogues in the cut-and-paste setting. In particular, there does not yet exist a sensible notion of the Dennis trace for cut-and-paste $$K$$-theory. In this paper we address the particular case of the $$K$$-theory of polyhedra, also called scissors congruence $$K$$-theory. We introduce an explicit, computable trace map from the higher scissors congruence groups to group homology, and use this trace to prove the existence of some nonzero classes in the higher scissors congruence groups. We also show that the $$K$$-theory of polyhedra is a homotopy orbit spectrum. This fits into Thomason’s general framework of $$K$$-theory commuting with homotopy colimits, but we give a self-contained proof. We then use this result to re-interpret the trace map as a partial inverse to the map that commutes homotopy orbits with algebraic $$K$$-theory.  more » « less
Award ID(s):
2104300 2052042 2104233 2052988 2052977 1846767 2052923
PAR ID:
10537126
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2024
Issue:
18
ISSN:
1073-7928
Format(s):
Medium: X Size: p. 12683-12710
Size(s):
p. 12683-12710
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we reduce the generalized Hilbert's third problem about Dehn invariants and scissors congruence classes to the injectivity of certain Cheeger–Chern–Simons invariants. We also establish a version of a conjecture of Goncharov relating scissors congruence groups of polytopes and the algebraic K-theory of C. 
    more » « less
  2. Let p∈Z be an odd prime. We prove a spectral version of Tate–Poitou duality for the algebraic K-theory spectra of number rings with p inverted. This identifies the homotopy type of the fiber of the cyclotomic trace K(OF)∧p→TC(OF)∧p after taking a suitably connective cover. As an application, we identify the homotopy type at odd primes of the homotopy fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic K-theory of Z. 
    more » « less
  3. The topological Hochschild homology of a ring (or ring spectrum) R is an S1-spectrum, and the fixed points of THH(R) for subgroups C_n of S1 have been widely studied due to their use in algebraic K-theory computations. Hesselholt and Madsen proved that the fixed points of topological Hochschild homology are closely related to Witt vectors. Further, they defined the notion of a Witt complex, and showed that it captures the algebraic structure of the homotopy groups of the fixed points of THH. Recent work defines a theory of twisted topological Hochschild homology for equivariant rings (or ring spectra) that builds upon Hill, Hopkins and Ravenel's work on equivariant norms. In this paper, we study the algebraic structure of the equivariant homotopy groups of twisted THH. In particular, drawing on the definition of equivariant Witt vectors by Blumberg, Gerhardt, Hill and Lawson, we define an equivariant Witt complex and prove that the equivariant homotopy of twisted THH has this structure. Our definition of equivariant Witt complexes contributes to a growing body of research in the subject of equivariant algebra. 
    more » « less
  4. Abstract Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category $$\mathsf V$$, as well as for small $$\mathsf V$$-categories. We show that each of these constructions extends to a shadow on an appropriate bicategory, which implies in particular that they are Morita invariant. We also define a generalized theory of Hochschild homology twisted by an automorphism and show that it is Morita invariant. Hochschild homology of Green functors and $$C_n$$-twisted topological Hochschild homology fit into this framework, which allows us to conclude that these theories are Morita invariant. We also study linearization maps relating the topological and algebraic theories, proving that the linearization map for topological Hochschild homology arises as a lax shadow functor, and constructing a new linearization map relating topological restriction homology and algebraic restriction homology. Finally, we construct a twisted Dennis trace map from the fixed points of equivariant algebraic $$K$$-theory to twisted topological Hochschild homology. 
    more » « less
  5. The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras. 
    more » « less