skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Boolean algebras, Morita invariance and the algebraic K-theory of Lawvere theories
The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.  more » « less
Award ID(s):
2104300
PAR ID:
10469521
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Mathematical Proceedings of the Cambridge Philosophical Society
Volume:
175
Issue:
2
ISSN:
0305-0041
Page Range / eLocation ID:
253 to 270
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category $$\mathsf V$$, as well as for small $$\mathsf V$$-categories. We show that each of these constructions extends to a shadow on an appropriate bicategory, which implies in particular that they are Morita invariant. We also define a generalized theory of Hochschild homology twisted by an automorphism and show that it is Morita invariant. Hochschild homology of Green functors and $$C_n$$-twisted topological Hochschild homology fit into this framework, which allows us to conclude that these theories are Morita invariant. We also study linearization maps relating the topological and algebraic theories, proving that the linearization map for topological Hochschild homology arises as a lax shadow functor, and constructing a new linearization map relating topological restriction homology and algebraic restriction homology. Finally, we construct a twisted Dennis trace map from the fixed points of equivariant algebraic $$K$$-theory to twisted topological Hochschild homology. 
    more » « less
  2. null (Ed.)
    In this paper we develop methods for classifying Baker, Richter, and Szymik's Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss–Hopkins obstruction theory, and give descent-theoretic tools, applying Lurie's work on $$\infty$$ -categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $$E$$ , we find that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed by the Brauer–Wall group of $$\pi _0(E)$$ , recovering a result of Baker, Richter, and Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes, depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $$\mathbb {Z}/8\times \mathbb {Z}/2$$ . Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$ -algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ $KO$ -algebra with the same coefficient ring as $$\mathrm {End}_{KO}(KU)$$ . This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$ , previously studied by Mathew and Stojanoska. 
    more » « less
  3. Abstract Cut-and-paste $$K$$-theory has recently emerged as an important variant of higher algebraic $$K$$-theory. However, many of the powerful tools used to study classical higher algebraic $$K$$-theory do not yet have analogues in the cut-and-paste setting. In particular, there does not yet exist a sensible notion of the Dennis trace for cut-and-paste $$K$$-theory. In this paper we address the particular case of the $$K$$-theory of polyhedra, also called scissors congruence $$K$$-theory. We introduce an explicit, computable trace map from the higher scissors congruence groups to group homology, and use this trace to prove the existence of some nonzero classes in the higher scissors congruence groups. We also show that the $$K$$-theory of polyhedra is a homotopy orbit spectrum. This fits into Thomason’s general framework of $$K$$-theory commuting with homotopy colimits, but we give a self-contained proof. We then use this result to re-interpret the trace map as a partial inverse to the map that commutes homotopy orbits with algebraic $$K$$-theory. 
    more » « less
  4. Abstract Given a closed symplectic manifoldX, we construct Gromov-Witten-type invariants valued both in (complex)K-theory and in any complex-oriented cohomology theory$$\mathbb{K}$$which isKp(n)-local for some MoravaK-theoryKp(n). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantumK-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantumK-theory and quantum$$\mathbb{K}$$-theory as commutative deformations of the corresponding (generalised) cohomology rings ofX; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus toX. On the algebraic side, in order to establish a common framework covering both ordinaryK-theory andKp(n)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts. 
    more » « less
  5. In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so. 
    more » « less