skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ti‐Modified Imogolite Nanotubes as Promising Photocatalyst 1D Nanostructures for H 2 Production
Abstract Imogolite nanotubes (INTs) are predicted as a unique 1D material with spatial separation of conduction and valence band edges but their large band gaps have inhibited their use as photocatalysts. The first step toward using these NTs in photocatalysis and exploiting the polarization‐promoted charge separation across their walls is to reduce their band gap. Here, the modification of double‐walled aluminogermanate INTs by incorporation of titanium into the NT walls is explored. The precursor ratiox= [Ti]/([Ge]+[Ti]) is modulated between 0 and 1. Structural and optical properties are determined at different scales and the photocatalytic performance is evaluated for H2production. Although the incorporation of Ti atoms into the structure remains limited, the optimal condition is found aroundx= 0.4 for which the resulting NTs reveal a remarkable hydrogen production of ≈1500 µmol g−1after 5 h for a noble metal‐free photocatalyst, a 65‐fold increase relative to a commercial TiO2‐P25. This is correlated to a lowering of the recombination rate of photogenerated charge carriers for the most active structures. These results confirm the theoretical predictions regarding the potential of modified INTs as photoactive nanoreactors and pave the way for investigating and exploiting their polarization properties for energy applications.  more » « less
Award ID(s):
2117896
PAR ID:
10537160
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small Methods
Volume:
8
Issue:
8
ISSN:
2366-9608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ti3C2TxMXene membranes have attracted considerable interest due to their exceptional water transport properties, yet the role of cation intercalation on governing transport remains poorly understood. In this experimental and theoretical study, it shows how intercalation with K+, Na+, Li+, Ca2+, and Mg2+modulates both the nanochannel architecture and water flux of Ti3C2Txmembranes. Unlike in graphene oxide analogs, cations with larger hydration diameters in Ti3C2Txexpand the interlayer spacing, widening flow channels, enhancing slip length of these nanochannels, and boosting water flux from 31.45 to 61.86 L m−2 h−1. To overcome intrinsically poor adhesion of Ti3C2Txto polymeric supports, this study incorporates a thin polyvinyl‐alcohol interlayer, which substantially enhances mechanical robustness and structural integrity. Together, these findings elucidate how cation hydration controls water transport and offer a flexible strategy for tailoring MXene membrane performance. 
    more » « less
  2. Abstract Photo‐responsive semiconductors can facilitate nitrogen activation and ammonia production, but the high recombination rate of photogenerated carriers represents a significant barrier. Ferroelectric photocatalysts show great promise in overcoming this challenge. Herein, by adopting a low‐temperature hydrothermal procedure with varying concentrations of glyoxal as the reducing agent, oxygen vacancies (Vo) are effectively produced on the surface of ferroelectric SrBi4Ti4O15(SBTO) nanosheets, which leads to a considerable increase in photocatalytic activity toward nitrogen fixation under simulated solar light with an ammonia production rate of 53.41 µmol g−1h−1, without the need of sacrificial agents or photosensitizers. This is ascribed to oxygen vacancies that markedly enhance the self‐polarization and internal electric field of ferroelectric SBTO, and hence, facilitate the separation of photogenerated charge carriers and light trapping as well as N2adsorption and activation, as compared to pristine SBTO. Consistent results are obtained in theoretical studies. Results from this study highlight the significance of surface oxygen vacancies in enhancing the performance of photocatalytic nitrogen fixation by ferroelectric catalysts. 
    more » « less
  3. Abstract Amorphous thin films of Ti doped GeO2are of interest for coatings of the mirrors in gravitational wave detectors (GWDs) due to their low internal friction (Vajenteet al2021Phys. Rev. Lett.127071101). The addition of Ti to amorphous GeO2(a-GeO2) enables tailoring of the optical and structural properties of the mixtures. However, the specific modifications that occur in the amorphous network with the addition of Ti are not known. In this work, x-ray photoelectron spectroscopy is used to identify modifications to the bonding of Ge and Ti atoms in mixtures of Ti dopeda-GeO2with different Ti cation content. The formation of (Ti–O–Ge) bonds is evidenced from: (1) the presence of a peak which intensity increases with Ti content and causes a shift to lower binding energy (BE) of the core level O 1speak; (2) the shift to higher BE of the Ti 2p3/2peak and a decrease in the energy split; and (3) the shift to lower BE of the Ge 3d5/2peak and increase in the energy split. These changes reflect modifications to the bonding when Ge replaces Ti in Ti–O–Ti bonds and Ti replaces Ge in Ge–O–Ge bonds due to their difference in electronegativity. A decrease in the O–O nearest-neighbour distance due to the incorporation of Ti atom is also observed from the broadening of the valence band spectra. The results show the 0.44 Ti dopeda-GeO2mixture has a balance between the (Ti–O–Ge) and the (Ge–O–Ge) networks, not observed in Ti poor and Ti rich mixtures. This finding could have important consequences in the optimisation of amorphous Ti dopeda-GeO2mixtures for low internal friction coatings of GWDs. 
    more » « less
  4. Abstract Alloying selected layered transitional metal trichalcogenides (TMTCs) with unique chain‐like structures offers the opportunities for structural, optical, and electrical engineering thus expands the regime of this class of pseudo‐one‐dimensional materials. Here, the novel phase transition in anisotropic Nb(1−x)TixS3alloys is demonstrated for the first time. Results show that Nb(1−x)TixS3can be fully alloyed across the entire composition range from triclinic‐phase NbS3to monoclinic‐phase TiS3. Surprisingly, incorporation of a small concentration of Ti (x ≈0.05–0.18) into NbS3host matrix is sufficient to induce triclinic to monoclinic transition. Theoretical studies suggest that Ti atoms effectively introduce hole doping, thus rapidly decreases the total energy of monoclinic phase and induces the phase transition. When alloyed, crystalline and optical anisotropy are largely preserved as evidenced by high resolution transmission electron microscopy and angle‐resolved Raman spectroscopy. Further Raman measurements identify Raman modes to determine crystalline anisotropy direction and offer insights into the degree of anisotropy. Overall results introduce Nb(1−x)TixS3as a new and easy phase change material and mark the first phase engineering in anisotropic van der Waals (vdW) trichalcogenide systems for their potential applications in two‐dimensional superconductivity, electronics, photonics, and information technologies. 
    more » « less
  5. Abstract The highest ambient‐pressure Tc among binary compounds is 40 K (MgB2). Higher Tc is achieved in high‐pressure hydrides or multielement cuprates. Alternatively, are explored superconducting properties of binary, metastable sub‐oxides, that may emerge under extremely low oxygen partial pressure. The emphasis is on the rock‐salt structure, which is known to promote superconductivity, and exploring AlO, ScO, TiO, and NbO. Dynamic lattice stability is achieved by introducing metal and oxygen vacancies in the fashion of Nb1−xO1−x‐type structure (x = ¼). The electron‐phonon (e‐ph) coupling is remarkably large in Al1−xO1−xand Ti1−xO1−x(λ ≈ 2 at x = ¼), with Tc ≈ 35 K according to the Allen–Dynes equation. Significantly, the coupling strength is comparable to that in high‐pressure hydrides, yet, in contrast to hydrides and MgB2, the coupling is largely driven by low frequency phonons. Sc1−xO1−xand Nb1−xO1−xshow significantly smaller λ and Tc. Further, hydrogen intercalation to boost λ and Tc is investigated. Only Ti1−x(O1−xHx) and Nb1−x(O1−xHx) are dynamically stable upon intercalation, where H, respectively, decreases and increases Tc. The effect of H doping on electronic structure and Tc is discussed. Altogether, the study suggests that metal sub‐oxides are promising compounds to achieve strong e‐ph coupling at ambient pressure. 
    more » « less