skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global analysis of Poales diversification – parallel evolution in space and time into open and closed habitats
Summary Poales are one of the most species‐rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution.We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations.Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species‐rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories.The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.  more » « less
Award ID(s):
1902064 1902078
PAR ID:
10537217
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
New Phytologist
Date Published:
Journal Name:
New Phytologist
Volume:
242
Issue:
2
ISSN:
0028-646X
Page Range / eLocation ID:
727 to 743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary The occurrence of conducting vascular tissue in the pith (CVTP) of tracheophytes is noteworthy. Medullary bundles, one of the remarkable examples of CVTP, evolved multiple times across angiosperms, notably in the Caryophyllales. Yet, information on the occurrence of medullary bundles is fragmented, hampering our understanding of their structure–function relationships, and evolutionary implications.Using three plastid molecular markers (matK,rbcL, andrps16 intron), a phylogeny is constructed for 561 species of Caryophyllales, and anatomical data are assembled for 856 species across 40 families to investigate the diversity of medullary bundles, their function, evolution, and diversification dynamics. Additionally, correlated evolution between medullary bundles and successive cambia was tested.Medullary bundles are ancestrally absent in Caryophyllales and evolved in core and noncore families. They are structurally diverse (e.g. number, arrangement, and types of bundles) and functionally active throughout the plant's lifespan, providing increased hydraulic conductivity, especially in herbaceous plants. Acquisition of medullary bundles does not explain diversification rate heterogeneity but is correlated to a higher diversification rate.Disparate developmental pathways were found leading to rampant convergent evolution of CVTP in Caryophyllales. These findings indicate the diversification of medullary bundles and vascular tissues as another central theme for functional and comparative molecular studies in Caryophyllales. 
    more » « less
  2. Summary Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods.Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called ‘hotspots’) do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD.Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub‐)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential.Safeguarding PD in the Anthropocene (including the protection of some comparatively species‐poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales. 
    more » « less
  3. Adaptive radiations are characterized by an increase in species and/or phenotypic diversity as organisms fill open ecological niches. Often, the putative adaptive radiation has been studied without explicit comparison to the patterns and rates of evolution of closely related clades, leaving open the question whether notable changes in evolutionary process indeed occurred at the origin of the group. Anolis lizards are an oft-used model for investigating the tempo and mode of adaptive radiations. Most of the prior research on the diversification of Anolis morphology has focused on the post-cranium because of its significance towards subdivision of the arboreal habitat. But the remarkable diversity in head shape in anoles has not been as thoroughly investigated. It remains unknown whether the tempo or mode of head shape diversification changed as anoles diversified. We performed geometric morphometric analysis of skull shape across a sample of 12 Iguanian families (110 species), including anoles. Anolis lizards occupy a unique area and a wider region of morphological space compared to the 11 other families examined. We did not find a difference in the evolutionary rate of head shape diversification between anoles and their relatives. Rather, the extraordinary amount of skull diversity arose through a distinct mode of evolution; anoles moved into novel regions by relatively large morphological transitions across morphological space compared to their relatives. Our results demonstrate that traits not directly tied to the adaptive shift of a lineage into unique ecological spaces may undergo exceptional patterns of change as the clade diversifies. 
    more » « less
  4. Sherratt, Emma; Morlon, Hélène (Ed.)
    Abstract Evolutionary innovations have played an important role in shaping the diversity of life on Earth. However, how these innovations arise and their downstream effects on patterns of morphological diversification remain poorly understood. Here, we examine the impact of evolutionary innovation on trait diversification in tetraodontiform fishes (pufferfishes, boxfishes, ocean sunfishes, and allies). This order provides an ideal model system for studying morphological diversification owing to their range of habitats and divergent morphologies, including the fusion of the teeth into a beak in several families. Using three-dimensional geometric morphometric data for 176 extant and fossil species, we examine the effect of skull integration and novel habitat association on the evolution of innovation. Strong integration may be a requirement for rapid trait evolution and facilitating the evolution of innovative structures, like the tetraodontiform beak. Our results show that the beak arose in the presence of highly conserved patterns of integration across the skull, suggesting that integration did not limit the range of available phenotypes to tetraodontiforms. Furthermore, we find that beaks have allowed tetraodontiforms to diversify into novel ecological niches, irrespective of habitat. Our results suggest that general rules pertaining to evolutionary innovation may be more nuanced than previously thought. 
    more » « less
  5. ABSTRACT Colonization of a novel habitat is often followed by radiation in the wake of ecological opportunity. Alternatively, some habitats should be inherently more constraining than others if the challenges of that environment have few evolutionary solutions. We examined the push-and-pull of these factors on evolution following habitat transitions, using anglerfishes (Lophiiformes) as a model. Deep-sea fishes are notoriously difficult to study, and poor sampling has limited progress thus far. Here we present a new phylogeny of anglerfishes with unprecedented taxonomic sampling (1,092 loci and 40% of species), combined with three-dimensional phenotypic data from museum specimens obtained with micro-CT scanning. We use these datasets to examine the tempo and mode of phenotypic and lineage diversification using phylogenetic comparative methods, comparing lineages in shallow and deep benthic versus bathypelagic habitats. Our results show that anglerfishes represent a surprising case where the bathypelagic lineage has greater taxonomic and phenotypic diversity than coastal benthic relatives. This defies expectations based on ecological principles since the bathypelagic zone is the most homogeneous habitat on Earth. Deep-sea anglerfishes experienced rapid lineage diversification concomitant with colonization of the bathypelagic zone from a continental slope ancestor. They display the highest body, skull and jaw shape disparity across lophiiforms. In contrast, reef-associated taxa show strong constraints on shape and low evolutionary rates, contradicting patterns suggested by other shallow marine fishes. We found that Lophiiformes as a whole evolved under an early burst model with subclades occupying distinct body shapes. We further discuss to what extent the bathypelagic clade is a secondary adaptive radiation, or if its diversity can be explained by non-adaptive processes. 
    more » « less