Recently, the region surrounding eHWC J1842−035 has been studied extensively by γ-ray observatories due to its extended emission reaching up to a few hundred TeV and potential as a hadronic accelerator. In this work, we use 1910 days of cumulative data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a dedicated systematic source search of the eHWC J1842−035 region. During the search, we found three sources in the region, namely, HAWC J1844−034, HAWC J1843−032, and HAWC J1846−025. We have identified HAWC J1844−034 as the extended source that emits photons with energies up to 175 TeV. We compute the spectrum for HAWC J1844−034, and by comparing with the observational results from other experiments, we have identified HESS J1843−033, LHAASO J1843−0338, and TASG J1844−038 as very-high-energy γ-ray sources with a matching origin. Also, we present and use the multiwavelength data to fit the hadronic and leptonic particle spectra. We have identified four pulsar candidates in the nearby region in which PSR J1844−0346 is found to be the most likely candidate due to its proximity to HAWC J1844−034 and the computed energy budget. We have also found SNR G28.6−0.1 as a potential counterpart source of HAWC J1844−034 for which both leptonic and hadronic scenarios are feasible.
This content will become publicly available on August 22, 2025
HESS J1809-193 is an unidentified TeV source, first detected by the High Energy Stereoscopic System (H.E.S.S.) collaboration. The emission originates in a source-rich region that includes several supernova remnants (SNRs) and pulsars including SNR G11.1+0.1, SNR G11.0-0.0, and the young radio pulsar PSR J1809-1917. Originally classified as a pulsar wind nebula candidate, recent studies show the peak of the TeV region overlapping with a system of molecular clouds. This resulted in the revision of the original leptonic scenario to look for alternate hadronic scenarios. Marked as a potential PeVatron candidate, this region has been studied extensively by H.E.S.S. due to its emission extending up to several tens of TeV. In this work, we use 2398 days of data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a systematic source search of the HESS J1809-193 region. We were able to resolve emission detected as an extended component (modelled as a symmetric Gaussian with a 1
- Award ID(s):
- 2209533
- NSF-PAR ID:
- 10537227
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 972
- Issue:
- 1
- ISSN:
- 1538-4357
- Page Range / eLocation ID:
- 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The latest High Altitude Water Cherenkov (HAWC) point-like source catalog up to 56 TeV reported the detection of two sources in the region of the Galactic plane at galactic longitude 52° < ℓ < 55°, 3HWC J1930+188 and 3HWC J1928+178. The first one is associated with a known TeV source, the supernova remnant SNR G054.1+00.3. It was discovered by one of the currently operating Imaging Atmospheric Cherenkov Telescope (IACT), the Very Energetic Radiation Imaging Telescope Array System (VERITAS), detected by the High Energy Stereoscopic System (H.E.S.S), and identified as a composite SNR. However, the source 3HWC J1928+178, discovered by HAWC and coincident with the pulsar PSR J1928+1746, was not detected by any IACT despite their long exposure on the region, until a recent new analysis of H.E.S.S. data was able to confirm it. Moreover, no X-ray counterpart has been detected from this pulsar. We present a multicomponent fit of this region using the latest HAWC data. This reveals an additional new source, HAWC J1932+192, which is potentially associated with the pulsar PSR J1932+1916, whose γ -ray emission could come from the acceleration of particles in its pulsar wind nebula. In the case of 3HWC J1928+178, several possible explanations are explored, in an attempt to unveil the origins of the very-high-energy γ -ray emission.more » « less
-
Abstract We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources, with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we discuss implications for detection prospects by multi-messenger campaigns.more » « less
-
Abstract High-energy neutrino and
γ -ray emission has been observed from the Galactic plane, which may come from individual sources and/or diffuse cosmic rays. We evaluate the contribution of these two components through the multimessenger connection between neutrinos andγ -rays in hadronic interactions. We derive maximum fluxes of neutrino emission from the Galactic plane usingγ -ray catalogs, including 4FGL, HGPS, 3HWC, and 1LHAASO, and measurements of the Galactic diffuse emission by Tibet ASγ and LHAASO. We find that the IceCube Galactic neutrino flux is larger than the contribution from all resolved sources when excluding promising leptonic sources such as pulsars, pulsar wind nebulae, and TeV halos. Our result indicates that the Galactic neutrino emission is likely dominated by the diffuse emission by the cosmic-ray sea and unresolved hadronicγ -ray sources. In addition, the IceCube flux is comparable to the sum of the flux of nonpulsar sources and the LHAASO diffuse emission especially above ∼30 TeV. This implies that the LHAASO diffuse emission may dominantly originate from hadronic interactions, either as the truly diffuse emission or unresolved hadronic emitters. Future observations of neutrino telescopes and air-showerγ -ray experiments in the Southern hemisphere are needed to accurately disentangle the source and diffuse emission of the Milky Way. -
Abstract GeV and TeV emission from the forward shocks of supernova remnants (SNRs) indicates that they are capable particle accelerators, making them promising sources of Galactic cosmic rays (CRs). However, it remains uncertain whether this
γ -ray emission arises primarily from the decay of neutral pions produced by very-high-energy hadrons, or from inverse-Compton and/or bremsstrahlung emission from relativistic leptons. By applying a semi-analytic approach to non-linear diffusive shock acceleration, and calculating the particle and photon spectra produced in different environments, we parameterize the relative strength of hadronic and leptonic emission. We show that even if CR acceleration is likely to occur in all SNRs, the observed photon spectra may primarily reflect the environment surrounding the SNR: the emission is expected to look hadronic unless the ambient density is particularly low (with proton number density ≲0.1 cm−3) or the photon background is enhanced with respect to average Galactic values (with radiation energy densityu rad≳ 10 eV cm−3). We introduce a hadronicity parameter to characterize how hadronic or leptonic we expect a source to look based on its environment, which can be used to guide the interpretation of currentγ -ray observations and the detection of high-energy neutrinos from SNRs.