skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characteristics of Gravity Waves in Opposing Phases of the QBO: A Reanalysis Perspective with ERA5
Abstract Gravity waves dispersing upward through the tropical stratosphere during opposing phases of the QBO are investigated using ERA5 data for 1979–2019. Log–log plots of two-sided zonal wavenumber–frequency spectra of vertical velocity, and cospectra representing the vertical flux of zonal momentum in the tropical lower stratosphere, exhibit distinctive gravity wave signatures across space and time scales ranging over two orders of magnitude. Spectra of the vertical flux of momentum are indicative of a strong dissipation of westward-propagating gravity waves during the easterly phase and vice versa. This selective “wind filtering” of the waves as they disperse upward imprints the vertical structure of the zonal flow on the resolved wave spectra, characteristic of (re)analysis and/or free-running models. The three-dimensional structures of the gravity waves are documented in composites of the vertical velocity field relative to grid-resolved tropospheric downwelling events at individual reference grid points along the equator. In the absence of a background zonal flow, the waves radiate outward and upward from their respective reference grid points in concentric rings. When a zonal flow is present, the rings are displaced downstream relative to the source and they are amplified upstream of the source and attenuated downstream of it, such that instead of rings, they assume the form of arcs. The log–log spectral representation of wind filtering of equatorial waves by the zonal flow in this paper can be used to diagnose the performance of high-resolution models designed to simulate the circulation of the tropical stratosphere.  more » « less
Award ID(s):
2202812
PAR ID:
10537259
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
81
Issue:
9
ISSN:
0022-4928
Format(s):
Medium: X Size: p. 1579-1587
Size(s):
p. 1579-1587
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ERA5 reanalysis with hourly time steps and ∼30 km horizontal resolution resolves a substantially larger fraction of the gravity wave spectrum than its predecessors. Based on a representation of the two-sided zonal wavenumber–frequency spectrum, we show evidence of gravity wave signatures in a suite of atmospheric fields. Cross-spectrum analysis reveals (i) a substantial upward flux of geopotential for both eastward- and westward-propagating waves, (ii) an upward flux of westerly momentum in eastward-propagating waves and easterly momentum in westward-propagating waves, and (iii) anticyclonic rotation of the wind vector with time—all characteristics of vertically propagating gravity and inertio-gravity waves. Two-sided meridional wavenumber–frequency spectra, which are computed along individual meridians and then zonally averaged, exhibit characteristics similar to the spectra computed on latitude circles, indicating that these waves propagate in all directions. The three-dimensional structure of these waves is also documented in composites of the temperature field relative to grid-resolved, wave-induced downwelling events at individual reference grid points along the equator. It is shown that the waves radiate outward and upward relative to the respective reference grid points, and their amplitude decreases rapidly with time. Within the broad continuum of gravity wave phase speeds there are preferred values around ±49 and ±23 m s−1, the former associated with the first baroclinic mode in which the vertical velocity perturbations are of the same sign throughout the depth of the troposphere, and the latter with the second mode in which they are of opposing polarity in the lower and upper troposphere. 
    more » « less
  2. Abstract We present estimates of gravity wave momentum fluxes calculated from Project Loon superpressure balloon data collected between 2013 and 2021. In total, we analyzed more than 5,000 days of data from balloon flights in the lower stratosphere, flights often over regions or during times of the year without any previous in‐situ observations of gravity waves. Maps of mean momentum fluxes show significant regional variability; we analyze that variability using the statistics of the momentum flux probability distributions for six regions: the Southern Ocean, the Indian Ocean, and the tropical and extratropical Pacific and Atlantic Oceans. The probability distributions are all approximately log‐normal, and using their geometric means and geometric standard deviations we statistically explain the sign and magnitude of regional mean and 99th percentile zonal momentum fluxes and regional momentum flux intermittencies. We study the dependence of the zonal momentum flux on the background zonal wind and argue that the increase of the momentum flux with the wind speed over the Southern Ocean is likely due to a varying combination of both wave sources and filtering. Finally, we show that as the magnitude of the momentum flux increases, the fractional contributions by high‐frequency waves increases, waves which need to be parameterized in large‐scale models of the atmosphere. In particular, the near‐universality of the log‐normal momentum flux probability distribution, and the relation of its statistical moments to the mean momentum flux and intermittency, offer useful checks when evaluating parameterized or resolved gravity waves in models. 
    more » « less
  3. null (Ed.)
    Abstract This paper describes stratospheric waves in ERA5 and evaluates the contributions of different types of waves to the driving of the quasi-biennial oscillation (QBO). Because of its higher spatial resolution compared to its predecessors, ERA5 is capable of resolving a broader spectrum of waves. It is shown that the resolved waves contribute to both eastward and westward accelerations near the equator, mainly by the way of the vertical flux of zonal momentum. The eastward accelerations by the resolved waves are mainly due to Kelvin waves and small-scale gravity (SSG) waves with zonal wavelengths smaller than 2000 km, whereas the westward accelerations are forced mainly by SSG waves, with smaller contributions from inertio-gravity and mixed Rossby–gravity waves. Extratropical Rossby waves disperse upward and equatorward into the tropical region and impart a westward acceleration to the zonal flow. They appear to be responsible for at least some of the irregularities in the QBO cycle. 
    more » « less
  4. Abstract. The tropical tropopause layer (TTL) is a sea of vertical motions. Convectively generated gravity waves create vertical winds on scales of a few to thousands of kilometers as they propagate in a stable atmosphere. Turbulence from gravity wave breaking, radiatively driven convection, and Kelvin–Helmholtz instabilities stirs up the TTL on the kilometer scale. TTL cirrus clouds, which moderate the water vapor concentration in the TTL and stratosphere, form in the cold phases of large-scale (> 100 km) wave activity. It has been proposed in several modeling studies that small-scale (< 100 km) vertical motions control the ice crystal number concentration and the dehydration efficiency of TTL cirrus clouds. Here, we present the first observational evidence for this. High-rate vertical winds measured by aircraft are a valuable and underutilized tool for constraining small-scale TTL vertical wind variability, examining its impacts on TTL cirrus clouds, and evaluating atmospheric models. We use 20 Hz data from five National Aeronautics and Space Administration (NASA) campaigns to quantify small-scale vertical wind variability in the TTL and to see how it varies with ice water content, distance from deep convective cores, and height in the TTL. We find that 1 Hz vertical winds are well represented by a normal distribution, with a standard deviation of 0.2–0.4 m s−1. Consistent with a previous observational study that analyzed two out of the five aircraft campaigns that we analyze here, we find that turbulence is enhanced over the tropical west Pacific and within 100 km of convection and is most common in the lower TTL (14–15.5 km), closer to deep convection, and in the upper TTL (15.5–17 km), further from deep convection. An algorithm to classify turbulence and long-wavelength (5 km < λ < 100 km) and short-wavelength (λ < 5 km) gravity wave activity during level flight legs is applied to data from the Airborne Tropical TRopopause EXperiment (ATTREX). The most commonly sampled conditions are (1) a quiescent atmosphere with negligible small-scale vertical wind variability, (2) long-wavelength gravity wave activity (LW GWA), and (3) LW GWA with turbulence. Turbulence rarely occurs in the absence of gravity wave activity. Cirrus clouds with ice crystal number concentrations exceeding 20 L−1 and ice water content exceeding 1 mg m−3 are rare in a quiescent atmosphere but about 20 times more likely when there is gravity wave activity and 50 times more likely when there is also turbulence, confirming the results of the aforementioned modeling studies. Our observational analysis shows that small-scale gravity waves strongly influence the ice crystal number concentration and ice water content within TTL cirrus clouds. Global storm-resolving models have recently been run with horizontal grid spacing between 1 and 10 km, which is sufficient to resolve some small-scale gravity wave activity. We evaluate simulated vertical wind spectra (10–100 km) from four global storm-resolving simulations that have horizontal grid spacing of 3–5 km with aircraft observations from ATTREX. We find that all four models have too little resolved vertical wind at horizontal wavelengths between 10 and 100 km and thus too little small-scale gravity wave activity, although the bias is much less pronounced in global SAM than in the other models. We expect that deficient small-scale gravity wave activity significantly limits the realism of simulated ice microphysics in these models and that improved representation requires moving to finer horizontal and vertical grid spacing. 
    more » « less
  5. null (Ed.)
    Diurnal variations of gravity waves over the Tibetan Plateau (TP) in summer 2015 were investigated based on high-resolution downscaled simulations from WRF-EnKF (Weather Research and Forecasting model and an ensemble Kalman filter) regional reanalysis data with particular emphasis on wave source, wave momentum fluxes and wave energies. Strong diurnal precipitations, which mainly happen along the south slope of the TP, tend to excite upward-propagating gravity waves. The spatial and temporal distributions of the momentum fluxes of small-scale (10–200 km) and meso-scale (200–500 km) gravity waves agree well with the diurnal precipitation distributions. The power spectra of momentum fluxes also show that the small- and meso-scale atmospheric processes become important during the period of the strongest rainfall. Eastward momentum fluxes and northward momentum fluxes are dominant. Wave energies are described in terms of kinetic energy (KE), potential energy (PE) and vertical fluctuation energy (VE). The diurnal variation and spatial distribution of VE in the lower stratosphere correspond to the diurnal rainfall in the troposphere. 
    more » « less