skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluctuations and freezing of biofilm-air interfaces
The study of interfacial roughening is common in physics, from epitaxial growth in the lab to pio-neering mathematical descriptions of universality in models of growth processes. These studies led to the identification of a series of general principles. Typically, stochastic growth produces an interface that becomes rougher as the deposit grows larger; this roughening can only be counteracted by mechanisms that act on the top of deposit, such as surface tension or surface diffusion. However, even when relaxation mechanisms are present, interfaces that continue to grow stochastically continue to change; new peaks and troughs emerge and disappear as stochastic growth produces a constantly changing, dynamic interface. These universal phenomena have been observed for bacterial colonies in a variety of contexts. However, previous studies have not characterized the interfacial phenomena at the top surface of a colony, i.e., the colony-air interface, when activity is only present at the bottom surface, i.e., the colony-solid interface, where nutrients are available, over long times. As traditional interfacial roughening models primarily focus on activity occurring at the top surface it is unclear what phenomena to expect over long times. Here, we use white light interferometry to study the roughening of bacterial biofilms, from many different species. We find that these colonies are remarkably smooth, suggesting that a mechanism of interfacial relaxation is at play. However, colonies remain remarkably smooth even after growing large. We discover that topographic fluctuations “freeze” in place, despite the fact that growth continues for hundreds of microns more. With simple simulations, we show that this emergent freezing is due to the dampening of fluctuations from cell growth by the cells between the growing zone and the surface. We find that the displacement field caused by a single perturbation decays exponentially, with a decay length ofδL. In line with that observation we also show that the topography ceases to change when perturbations are a distanceδLaway from the surface. Thus, over-damped systems in which activity occurs at the bottom surface represent a distinct class of interfacial growth phenomena, capable of producing frozen topographies and remarkably smooth surfaces from spatially and temporally stochastic growth.  more » « less
Award ID(s):
2310741 1806833
PAR ID:
10537449
Author(s) / Creator(s):
;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bacterial colonies growing on solid surfaces can exhibit robust expansion kinetics, with constant radial growth and saturating vertical expansion, suggesting a common developmental program. Here, we study this process forEscherichia colicells using a combination of modeling and experiments. We show that linear radial colony expansion is set by the verticalization of interior cells due to mechanical constraints rather than radial nutrient gradients as commonly assumed. In contrast, vertical expansion slows down from an initial linear regime even while radial expansion continues linearly. This vertical slowdown is due to limitation of cell growth caused by vertical nutrient gradients, exacerbated by concurrent oxygen depletion. Starvation in the colony interior results in a distinct death zone which sets in as vertical expansion slows down, with the death zone increasing in size along with the expanding colony. Thus, our study reveals complex heterogeneity within simple monoclonal bacterial colonies, especially along the vertical dimension. The intricate dynamics of such emergent behavior can be understood quantitatively from an interplay of mechanical constraints and nutrient gradients arising from obligatory metabolic processes. 
    more » « less
  2. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments. 
    more » « less
  3. Abstract Colonies of the social bacteriumMyxococcus xanthusgo through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are substantially larger than the mean due to polar active forces generated by the self-propelled rod-shaped cells. We find thatM. xanthuscells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies. 
    more » « less
  4. Grilli, Jacopo (Ed.)
    Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions. Here, we use individual-based models to simulate contact killing between two bacterial strains with different killing rates in a wide range of community sizes. We found that community size has a substantial impact on outcomes; in fact, in some competitions the identity of the most fit strain differs in large and small environments. Specifically, when at a numerical disadvantage, the strain with the slow killing rate is more successful in smaller environments than in large environments. The improved performance in small spaces comes from finite size effects; stochastic fluctuations in the initial relative abundance of each strain in small environments lead to dramatically different outcomes. However, when the slow killing strain has a numerical advantage, it performs better in large spaces than in small spaces, where stochastic fluctuations now aid the fast killing strain in small communities. Finally, we experimentally validate these results by confining contact killing strains ofVibrio choleraein transmission electron microscopy grids. The outcomes of these experiments are consistent with our simulations. When rare, the slow killing strain does better in small environments; when common, the slow killing strain does better in large environments. Together, this work demonstrates that finite size effects can substantially modify antagonistic competitions, suggesting that colony size may, at least in part, subvert the microbial arms race. 
    more » « less
  5. Abstract Numerous tropical macroalgae provide associational refuge to other benthic organisms, presumably due to their physical structure and/or production of chemical metabolites. One feature determining their effectiveness as an associational refuge is likely to be the size of the organism benefitting from the refuge. Using a manipulative experiment in the back reef of Moorea, French Polynesia, we tested if the macroalgaTurbinaria ornataprovided an associational refuge from fish corallivores for small colonies of massivePoritesspp., and how this differed with colony size (20–100 mm diameter). Tissue loss through corallivory increased with colony size but was ~ 72% less forPoritescolonies associated withT. ornataversus colonies separated from this macroalga, while dense macroalgae beds on contemporary reefs negatively impact the recruitment, growth and survival of corals, small colonies ofPoritesappear to benefit, through reduced corallivory, by associating with the macroalgaTurbinaria. This association may come at a cost (e.g., reduced growth) and should be the focus of future research. 
    more » « less