Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its “range expansion” rate. One factor that limits the range expansion rate is vertical growth; at the biofilm edge there is a direct trade-off between horizontal and vertical growth—the more a biofilm grows up, the less it can grow out. Thus, the balance of horizontal and vertical growth impacts the range expansion rate and, crucially, the overall biofilm growth rate. However, the biophysical connection between horizontal and vertical growth remains poorly understood, due in large part to difficulty in resolving biofilm shape with sufficient spatial and temporal resolution from small length scales to macroscopic sizes. Here, we experimentally show that the horizontal expansion rate of bacterial colonies is controlled by the contact angle at the biofilm edge. Using white light interferometry, we measure the three-dimensional surface morphology of growing colonies, and find that small colonies are surprisingly well-described as spherical caps. At later times, nutrient diffusion and uptake prevent the tall colony center from growing exponentially. However, the colony edge always has a region short enough to grow exponentially; the size and shape of this region, characterized by its contact angle, along with cellular doubling time, determines the range expansion rate. We found that the geometry of the exponentially growing biofilm edge is well-described as a spherical-cap-napkin-ring, i.e., a spherical cap with a cylindrical hole in its center (where the biofilm is too tall to grow exponentially). We derive an exact expression for the spherical-cap-napkin-ring-based range expansion rate; further, to first order, the expansion rate only depends on the colony contact angle, the thickness of the exponentially growing region, and the cellular doubling time. We experimentally validate both of these expressions. In line with our theoretical predictions, we find that biofilms with long cellular doubling times and small contact angles do in fact grow faster than biofilms with short cellular doubling times and large contact angles. Accordingly, sensitivity analysis shows that biofilm growth rates are more sensitive to their contact angles than to their cellular growth rates. Thus, to understand the fitness of a growing biofilm, one must account for its shape, not just its cellular doubling time. 
                        more » 
                        « less   
                    
                            
                            Morphological instability and roughening of growing 3D bacterial colonies
                        
                    
    
            How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10394413
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 43
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi.more » « less
- 
            The study of interfacial roughening is common in physics, from epitaxial growth in the lab to pio-neering mathematical descriptions of universality in models of growth processes. These studies led to the identification of a series of general principles. Typically, stochastic growth produces an interface that becomes rougher as the deposit grows larger; this roughening can only be counteracted by mechanisms that act on the top of deposit, such as surface tension or surface diffusion. However, even when relaxation mechanisms are present, interfaces that continue to grow stochastically continue to change; new peaks and troughs emerge and disappear as stochastic growth produces a constantly changing, dynamic interface. These universal phenomena have been observed for bacterial colonies in a variety of contexts. However, previous studies have not characterized the interfacial phenomena at the top surface of a colony, i.e., the colony-air interface, when activity is only present at the bottom surface, i.e., the colony-solid interface, where nutrients are available, over long times. As traditional interfacial roughening models primarily focus on activity occurring at the top surface it is unclear what phenomena to expect over long times. Here, we use white light interferometry to study the roughening of bacterial biofilms, from many different species. We find that these colonies are remarkably smooth, suggesting that a mechanism of interfacial relaxation is at play. However, colonies remain remarkably smooth even after growing large. We discover that topographic fluctuations “freeze” in place, despite the fact that growth continues for hundreds of microns more. With simple simulations, we show that this emergent freezing is due to the dampening of fluctuations from cell growth by the cells between the growing zone and the surface. We find that the displacement field caused by a single perturbation decays exponentially, with a decay length ofδL. In line with that observation we also show that the topography ceases to change when perturbations are a distanceδLaway from the surface. Thus, over-damped systems in which activity occurs at the bottom surface represent a distinct class of interfacial growth phenomena, capable of producing frozen topographies and remarkably smooth surfaces from spatially and temporally stochastic growth.more » « less
- 
            null (Ed.)Bacteria grow on surfaces in complex immobile communities known as biofilms, which are composed of cells embedded in an extracellular matrix. Within biofilms, bacteria often interact with members of their own species and cooperate or compete with members of other species via quorum sensing (QS). QS is a process by which microbes produce, secrete, and subsequently detect small molecules called autoinducers (AIs) to assess their local population density. We explore the competitive advantage of QS through agent-based simulations of a spatial model in which colony expansion via extracellular matrix production provides greater access to a limiting diffusible nutrient. We note a significant difference in results based on whether AI production is constitutive or limited by nutrient availability: If AI production is constitutive, simple QS-based matrix-production strategies can be far superior to any fixed strategy. However, if AI production is limited by nutrient availability, QS-based strategies fail to provide a significant advantage over fixed strategies. To explain this dichotomy, we derive a biophysical limit for the dynamic range of nutrient-limited AI concentrations in biofilms. This range is remarkably small (less than 10-fold) for the realistic case in which a growth-limiting diffusible nutrient is taken up within a narrow active growth layer. This biophysical limit implies that for QS to be most effective in biofilms AI production should be a protected function not directly tied to metabolism.more » « less
- 
            Abstract Bacterial colonies growing on solid surfaces can exhibit robust expansion kinetics, with constant radial growth and saturating vertical expansion, suggesting a common developmental program. Here, we study this process forEscherichia colicells using a combination of modeling and experiments. We show that linear radial colony expansion is set by the verticalization of interior cells due to mechanical constraints rather than radial nutrient gradients as commonly assumed. In contrast, vertical expansion slows down from an initial linear regime even while radial expansion continues linearly. This vertical slowdown is due to limitation of cell growth caused by vertical nutrient gradients, exacerbated by concurrent oxygen depletion. Starvation in the colony interior results in a distinct death zone which sets in as vertical expansion slows down, with the death zone increasing in size along with the expanding colony. Thus, our study reveals complex heterogeneity within simple monoclonal bacterial colonies, especially along the vertical dimension. The intricate dynamics of such emergent behavior can be understood quantitatively from an interplay of mechanical constraints and nutrient gradients arising from obligatory metabolic processes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    