skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a unified nonlocal, peridynamics framework for the coarse-graining of molecular dynamics data with fractures
Abstract Molecular dynamics (MD) has served as a powerful tool for designing materials with reduced reliance on laboratory testing. However, the use of MD directly to treat the deformation and failure of materials at the mesoscale is still largely beyond reach. In this work, we propose a learning framework to extract a peridynamics model as a mesoscale continuum surrogate from MD simulated material fracture data sets. Firstly, we develop a novel coarse-graining method, to automatically handle the material fracture and its corresponding discontinuities in the MD displacement data sets. Inspired by the weighted essentially non-oscillatory (WENO) scheme, the key idea lies at an adaptive procedure to automatically choose the locally smoothest stencil, then reconstruct the coarse-grained material displacement field as the piecewise smooth solutions containing discontinuities. Then, based on the coarse-grained MD data, a two-phase optimization-based learning approach is proposed to infer the optimal peridynamics model with damage criterion. In the first phase, we identify the optimal nonlocal kernel function from the data sets without material damage to capture the material stiffness properties. Then, in the second phase, the material damage criterion is learnt as a smoothed step function from the data with fractures. As a result, a peridynamics surrogate is obtained. As a continuum model, our peridynamics surrogate model can be employed in further prediction tasks with different grid resolutions from training, and hence allows for substantial reductions in computational cost compared with MD. We illustrate the efficacy of the proposed approach with several numerical tests for the dynamic crack propagation problem in a single-layer graphene. Our tests show that the proposed data-driven model is robust and generalizable, in the sense that it is capable of modeling the initialization and growth of fractures under discretization and loading settings that are different from the ones used during training.  more » « less
Award ID(s):
1753031
PAR ID:
10537558
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Applied Mathematics and Mechanics
Volume:
44
Issue:
7
ISSN:
0253-4827
Page Range / eLocation ID:
1125 to 1150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The line crack models, including linear elastic fracture mechanics (LEFM), cohesive crack model (CCM), and extended finite element method (XFEM), rest on the century-old hypothesis of constancy of materials’ fracture energy. However, the type of fracture test presented here, named the gap test, reveals that, in concrete and probably all quasibrittle materials, including coarse-grained ceramics, rocks, stiff foams, fiber composites, wood, and sea ice, the effective mode I fracture energy depends strongly on the crack-parallel normal stress, in-plane or out-of-plane. This stress can double the fracture energy or reduce it to zero. Why hasn’t this been detected earlier? Because the crack-parallel stress in all standard fracture specimens is negligible, and is, anyway, unaccountable by line crack models. To simulate this phenomenon by finite elements (FE), the fracture process zone must have a finite width, and must be characterized by a realistic tensorial softening damage model whose vectorial constitutive law captures oriented mesoscale frictional slip, microcrack opening, and splitting with microbuckling. This is best accomplished by the FE crack band model which, when coupled with microplane model M7, fits the test results satisfactorily. The lattice discrete particle model also works. However, the scalar stress–displacement softening law of CCM and tensorial models with a single-parameter damage law are inadequate. The experiment is proposed as a standard. It represents a simple modification of the three-point-bend test in which both the bending and crack-parallel compression are statically determinate. Finally, a perspective of various far-reaching consequences and limitations of CCM, LEFM, and XFEM is discussed. 
    more » « less
  2. Abstract Many geo‐engineering applications, for example, enhanced geothermal systems, rely on hydraulic fracturing to enhance the permeability of natural formations and allow for sufficient fluid circulation. Over the past few decades, the phase‐field method has grown in popularity as a valid approach to modeling hydraulic fracturing because of the ease of handling complex fracture propagation geometries. However, existing phase‐field methods cannot appropriately capture nucleation of hydraulic fractures because their formulations are solely energy‐based and do not explicitly take into account the strength of the material. Thus, in this work, we propose a novel phase‐field formulation for hydraulic fracturing with the main goal of modeling fracture nucleation in porous media, for example, rocks. Built on the variational formulation of previous phase‐field methods, the proposed model incorporates the material strength envelope for hydraulic fracture nucleation through two important steps: (i) an external driving force term, included in the damage evolution equation, that accounts for the material strength; (ii) a properly designed damage function that defines the fluid pressure contribution on the crack driving force. The comparison of numerical results for two‐dimensional test cases with existing analytical solutions demonstrates that the proposed phase‐field model can accurately model both nucleation and propagation of hydraulic fractures. Additionally, we present the simulation of hydraulic fracturing in a three‐dimensional domain with various stress conditions to demonstrate the applicability of the method to realistic scenarios. 
    more » « less
  3. In this paper, material deformation during ultra-precision machining (UPM) on the C-, R-, and A-planes of sapphire was investigated using the slip/fracture activation model where the likelihood of activation of individual plastic deformation and fracture systems on different crystallographic planes was calculated. The stress data obtained from molecular dynamics (MD) simulations were utilized, and the slip/fracture activation model was developed by incorporating the principal stresses in calculating the plastic deformation and fracture cleavage parameters. The analysis methodology was applied to study material deformation along various cutting orientations in sapphire. The stress field at crack initiation during UPM on C-, R-, and A-planes of sapphire was calculated using molecular dynamics (MD) simulations. An equation describing the relationship between crack initiation and its triggering parameters was formulated considering the systems’ plastic deformation and cleavage fractures. The model can qualitatively predict the crack initiations for various cutting orientations. The proposed model was verified through ultra-precision orthogonal plunge cut experiments along the same cutting orientations as in the MD simulations. 
    more » « less
  4. Krishnaswamy, RaviChandar (Ed.)
    The present study aims to configure and train a data-driven geometry-specific surrogate model (DD GSM) to simulate the load–displacement behavior until fracture in cylindrical notched specimens subjected to uniaxial monotonic tension tests. Plastic strain hardening that governs the load–displacement behavior and ductile fracture in metals are history-dependent phenomena. With this, the load–displacement response until ductile fracture in metals is hypothesized as time sequence data. To test our hypothesis, a long short-term memory (LSTM) based deep neural network was configured and trained. LSTM is a type of neural network that takes sequential data as input and forecasts the future based on the learned past sequential trend. In this study, the trained LSTM network is referred to as DD GSM as it is used to forecast the load–displacement behavior until ductile fracture for the cylindrical notched specimens. The DD GSM is trained using the load–displacement data until fracture, extracted from the finite element analyses of notched cylindrical test specimens made of ASTM A992 steel. The damage leading to fracture was captured using the Gurson–Tvergaard–Needleman (GTN) model. Finally, the trained DD GSM is validated by predicting the overall load–displacement behavior, fracture displacement, and peak load-carrying capacity of cylindrical notched ASTM A992 structural steel specimens available in the literature that are not used for training purposes. The DD GSM was able to forecast some portions of the load–displacement curve and predict the fracture displacement and peak load-carrying capacity of the notched specimens. Furthermore, the geometric sensitivity of the trained DD GSM was demonstrated by simulating the load–displacement response of an ASTM A992 steel bar with a central hole. 
    more » « less
  5. The 2023 smooth Lagrangian Crack-Band Model (slCBM), inspired by the 2020 invention of the gap test, prevented spurious damage localization during fracture growth by introducing the second gradient of the displacement field vector, named the “sprain,” as the localization limiter. The key idea was that, in the finite element implementation, the displacement vector and its gradient should be treated as independent fields with the lowest ( C 0 ) continuity, constrained by a second-order Lagrange multiplier tensor. Coupled with a realistic constitutive law for triaxial softening damage, such as microplane model M7, the known limitations of the classical Crack Band Model were eliminated. Here, we show that the slCBM closely reproduces the size effect revealed by the gap test at various crack-parallel stresses. To describe it, we present an approximate corrective formula, although a strong loading-path dependence limits its applicability. Except for the rare case of zero crack-parallel stresses, the fracture predictions of the line crack models (linear elastic fracture mechanics, phase-field, extended finite element method (XFEM), cohesive crack models) can be as much as 100% in error. We argue that the localization limiter concept must be extended by including the resistance to material rotation gradients. We also show that, without this resistance, the existing strain-gradient damage theories may predict a wrong fracture pattern and have, for Mode II and III fractures, a load capacity error as much as 55%. Finally, we argue that the crack-parallel stress effect must occur in all materials, ranging from concrete to atomistically sharp cracks in crystals. 
    more » « less