Quantum circuit simulations enable researchers to develop quantum algorithms without the need for a physical quantum computer. Quantum computing simulators, however, all suffer from significant memory footprint requirements, which prevents large circuits from being simulated on classical super-computers. In this paper, we explore different lossy compression strategies to substantially shrink quantum circuit tensors in the QTensor package (a state-of-the-art tensor network quantum circuit simulator) while ensuring the reconstructed data satisfy the user-needed fidelity.Our contribution is fourfold. (1) We propose a series of optimized pre- and post-processing steps to boost the compression ratio of tensors with a very limited performance overhead. (2) We characterize the impact of lossy decompressed data on quantum circuit simulation results, and leverage the analysis to ensure the fidelity of reconstructed data. (3) We propose a configurable compression framework for GPU based on cuSZ and cuSZx, two state-of-the-art GPU-accelerated lossy compressors, to address different use-cases: either prioritizing compression ratios or prioritizing compression speed. (4) We perform a comprehensive evaluation by running 9 state-of-the-art compressors on an NVIDIA A100 GPU based on QTensor-generated tensors of varying sizes. When prioritizing compression ratio, our results show that our strategies can increase the compression ratio nearly 10 times compared to using only cuSZ. When prioritizing throughput, we can perform compression at the comparable speed as cuSZx while achieving 3-4× higher compression ratios. Decompressed tensors can be used in QTensor circuit simulation to yield a final energy result within 1-5% of the true energy value.
more »
« less
MSz: An Efficient Parallel Algorithm for Correcting Morse-Smale Segmentations in Error-Bounded Lossy Compressors
This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time; the edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we developed a workflow to fix extrema and integral lines alternatively until convergence within finite iterations; we accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU.
more »
« less
- Award ID(s):
- 2313123
- PAR ID:
- 10537607
- Publisher / Repository:
- IEEE
- Date Published:
- Format(s):
- Medium: X
- Location:
- St Pete Beach, FL
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality ofmore » « less
-
Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor.more » « less
-
Error-bounded lossy compression has been effective in significantly reducing the data storage/transfer burden while preserving the reconstructed data fidelity very well. Many error-bounded lossy compressors have been developed for a wide range of parallel and distributed use cases for years. They are designed with distinct compression models and principles, such that each of them features particular pros and cons. In this paper we provide a comprehensive survey of emerging error-bounded lossy compression techniques. The key contribution is fourfold. (1) We summarize a novel taxonomy of lossy compression into 6 classic models. (2) We provide a comprehensive survey of 10 commonly used compression components/modules. (3) We summarized pros and cons of 47 state-of-the-art lossy compressors and present how state-of-the-art compressors are designed based on different compression techniques. (4) We discuss how customized compressors are designed for specific scientific applications and use-cases. We believe this survey is useful to multiple communities including scientific applications, high-performance computing, lossy compression, and big data.more » « less
-
The objective of this work is to develop error-bounded lossy compression methods to preserve topological features in 2D and 3D vector fields. Specifically, we explore the preservation of critical points in piecewise linear and bilinear vector fields. We define the preservation of critical points as, without any false positive, false negative, or false type in the decompressed data, (1) keeping each critical point in its original cell and (2) retaining the type of each critical point (e.g., saddle and attracting node). The key to our method is to adapt a vertex-wise error bound for each grid point and to compress input data together with the error bound field using a modified lossy compressor. Our compression algorithm can be also embarrassingly parallelized for large data handling and in situ processing. We benchmark our method by comparing it with existing lossy compressors in terms of false positive/negative/type rates, compression ratio, and various vector field visualizations with several scientific applications.more » « less
An official website of the United States government

