skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 2, 2026

Title: A Survey on Error-Bounded Lossy Compression for Scientific Datasets
Error-bounded lossy compression has been effective in significantly reducing the data storage/transfer burden while preserving the reconstructed data fidelity very well. Many error-bounded lossy compressors have been developed for a wide range of parallel and distributed use cases for years. They are designed with distinct compression models and principles, such that each of them features particular pros and cons. In this paper we provide a comprehensive survey of emerging error-bounded lossy compression techniques. The key contribution is fourfold. (1) We summarize a novel taxonomy of lossy compression into 6 classic models. (2) We provide a comprehensive survey of 10 commonly used compression components/modules. (3) We summarized pros and cons of 47 state-of-the-art lossy compressors and present how state-of-the-art compressors are designed based on different compression techniques. (4) We discuss how customized compressors are designed for specific scientific applications and use-cases. We believe this survey is useful to multiple communities including scientific applications, high-performance computing, lossy compression, and big data.  more » « less
Award ID(s):
2348465
PAR ID:
10594822
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Computing Surveys
ISSN:
0360-0300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Error-bounded lossy compression has been a critical technique to significantly reduce the sheer amounts of simulation datasets for high-performance computing (HPC) scientific applications while effectively controlling the data distortion based on user-specified error bound. In many real-world use cases, users must perform computational operations on the compressed data. However, none of the existing error-bounded lossy compressors support operations, inevitably resulting in undesired decompression costs. In this paper, we propose a novel error-bounded lossy compressor (called SZOps), which supports not only error-bounding features but efficient computations (including negation, scalar addition, scalar multiplication, mean, variance, etc.) on the compressed data without the complete decompression step, which is the first attempt to the best of our knowledge. We develop several optimization strategies to maximize the overall compression ratio and execution performance. We evaluate SZOps compared to other state-of-the-art lossy compressors based on multiple real-world scientific application datasets. 
    more » « less
  2. null (Ed.)
    Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of 
    more » « less
  3. Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor. 
    more » « less
  4. Today’s scientific high-performance computing applications and advanced instruments are producing vast volumes of data across a wide range of domains, which impose a serious burden on data transfer and storage. Error-bounded lossy compression has been developed and widely used in the scientific community because it not only can significantly reduce the data volumes but also can strictly control the data distortion based on the user-specified error bound. Existing lossy compressors, however, cannot offer ultrafast compression speed, which is highly demanded by numerous applications or use cases (such as in-memory compression and online instrument data compression). In this paper we propose a novel ultrafast error-bounded lossy compressor that can obtain fairly high compression performance on both CPUs and GPUs and with reasonably high compression ratios. The key contributions are threefold. (1) We propose a generic error-bounded lossy compression framework—called SZx—that achieves ultrafast performance through its novel design comprising only lightweight operations such as bitwise and addition/subtraction operations, while still keeping a high compression ratio. (2) We implement SZx on both CPUs and GPUs and optimize the performance according to their architectures. (3) We perform a comprehensive evaluation with six real-world production-level scientific datasets on both CPUs and GPUs. Experiments show that SZx is 2∼16× faster than the second-fastest existing error-bounded lossy compressor (either SZ or ZFP) on CPUs and GPUs, with respect to both compression and decompression. 
    more » « less
  5. With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world scientific floating-point datasets from different domains. Experiments show that FRaZ effectively identifies the optimum error setting in the entire error setting space of any given lossy compressor. While fixed-ratio lossy compression is slower than fixed-error compression, it provides an important new lossy compression technique for users of very large scientific floating-point datasets. 
    more » « less